期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Patterns,magnitude,and controlling factors of hydraulic redistribution of soil water by Tamarix ramosissima roots 被引量:12
1
作者 TengFei YU Qi FENG +2 位作者 jianhua si HaiYang XI Wei LI 《Journal of Arid Land》 SCIE CSCD 2013年第3期396-407,共12页
Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to ... Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient. 展开更多
关键词 drought tolerance phreatophyte hydraulic redistribution root sap flow Tamarix ramosissima
下载PDF
Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions 被引量:11
2
作者 Qi FENG JiaZhong PENG +2 位作者 JianGuo LI HaiYang XI jianhua si 《Journal of Arid Land》 SCIE 2012年第4期378-389,共12页
This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the ... This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the determination of ecological warning. The surveys suggest that soil moisture and soil salinity are the most important environmental factors in determining the distribution and changes in vegetation. The groundwater level threshold of ecological warning can be determined by using a network of groundwater depth observation sites that monitor the environmental moisture gradient as reflected by plant physiological characteristics. According to long-term field observations within the Ejin oases, the groundwater level threshold for salinity control varied between 0.5 m and 1.5 m, and the ecological warning threshold varied between 3.5 m and 4.0 m. The quantity of groundwater re- sources (renewable water resources, ecological water resources, and exploitable water resources) in arid areas can be calculated from regional groundwater level information, without localized hydrogeological data. The concept of groundwater level threshold of ecological warning was established according to water development and water re- sources supply, and available groundwater resources were calculated. The concept not only enriches and broadens the content of groundwater studies, but also helps in predicting the prospects for water resources development. 展开更多
关键词 evaluation water resources Ejin oasis ecological groundwater level groundwater level threshold of ecologicalwarning
下载PDF
Evapotranspiration of a Populus euphratica Oliv. forest and its controlling factors in the lower Heihe River Basin,Northwest China 被引量:6
3
作者 TengFei Yu Qi Feng +2 位作者 jianhua si XiaoYou Zhang ChunYan Zhao 《Research in Cold and Arid Regions》 CSCD 2017年第2期175-182,共8页
Evapotranspiration (ET) within an ecosystem is crucial for die water-limited environment that currently lacks adequate quantification in the arid region of Northwest China, mainly covered by phreatophytes, such as the... Evapotranspiration (ET) within an ecosystem is crucial for die water-limited environment that currently lacks adequate quantification in the arid region of Northwest China, mainly covered by phreatophytes, such as the Populus euphratica Oliv. tree and the Tamarix ramosissima Ledeb. shrub species. Accordingly. ET was measured for an entire year using eddy covariance (EC) in P. euphratica stands in the lower Heihe River Basin, Northwest China. During the growing season, the total ET was 850 mm, with a mean of 4.0 mm/d, Which is obviously more than that observed at tree-level and stand level scales, which was likely due to the different level of soil evaporation induced by irrigation via water conveyance. Factors associated with ET fall into either environmental or plant eco-physiological categories. Environmental factors account for at least 79% variation of ET and the linear relationship between ET and the voundwater table (GWT) revealed the potential water use of P. euphratica forests under the non-water stress condition with die GWT less than 3 m deep. Plant eco-physiological parameters, specifically die leaf area 'index (LAI), have direct impact on the seasonal pattern of ET which provides a valuable reference to the wide-area estimates of ET for riparian forests by using LAI. In conclusion, P. euphratica forests have high water use after water conveyance, which may be the result of long-term adapting to local climates and limited water availability. 展开更多
关键词 EVAPOTRANSPIRATION eddy covariance Populus euphratica Oliv. forest Bei he River Basin
下载PDF
How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis,Northwest China 被引量:1
4
作者 HaiYang Xi JingTian Zhang +3 位作者 Qi Feng Lu Zhang jianhua si TengFei Yu 《Research in Cold and Arid Regions》 CSCD 2019年第1期62-80,共19页
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he... Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin. 展开更多
关键词 groundwater CHANGES DESERT RIPARIAN forest EJINA OASIS WAVES leaf area index(LAI) water budgets
下载PDF
Comparable water use of two contrasting riparian forests in the lower Heihe River basin, Northwest China 被引量:1
5
作者 Tengfei Yu Qi Feng +3 位作者 jianhua si Xiaoyou Zhang Haiyang Xi Chunyan Zhao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1215-1224,共10页
Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is p... Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability. 展开更多
关键词 Eddy covariance EVAPOTRANSPIRATION Heihe River basin Riparian forest
下载PDF
Characteristics of the stem sap flux of Populus euphratica in the lower reaches of the Heihe River Basin, Northwest China 被引量:1
6
作者 XiaoYou Zhang jianhua si 《Research in Cold and Arid Regions》 2009年第5期458-466,共9页
Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem ... Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem sap flux of Populus euphratica and its rela-tionship to environmental factors using the thermal dissipation probe(TDP) method.The results showed that(1) daily variation of sap flow of P.euphratica on clear days exhibited an obvious unimodal curve;sap flow rates in June,July,August,and September were 13.39,12.07,12.69,and 5.10 L/d,respectively;(2) the average transpiration of the Populus euphratica from June through September amounted to 1,309.84 L;(3) stem sap flow can be affected by a number of environmental factors that,in terms of the influential degree,can be arranged in the descending order of air temperature,soil moisture,relative humidity,total solar radiation,soil temperature,and wind velocity. 展开更多
关键词 sap flow Populus euphratica heat diffusion method environmental factors
下载PDF
Ecophysiological responses to drought stress in Populus euphratica
7
作者 ChunYan Zhao jianhua si +3 位作者 Qi Feng TengFei Yu Huan Luo Jie Qin 《Research in Cold and Arid Regions》 CSCD 2021年第4期326-336,共11页
Ecophysiological responses to drought stress of Populus euphratica in Alashan Desert Eco-hydrology Experimental Research Station were investigated.Results show that under mild and moderate drought stress,stomatal leng... Ecophysiological responses to drought stress of Populus euphratica in Alashan Desert Eco-hydrology Experimental Research Station were investigated.Results show that under mild and moderate drought stress,stomatal length,aperture,area and density is likely to decrease in the early days,but afterwards this is likely to recovery with treatment over the pas‐sage of treatment time.Under severe drought stress,these properties appear to decline continuously.However,after 45 days of drought-stress treatment,the decline is not as noticeable as before,indicating that Populus euphratica could possibly reduce water evaporation by shutting down the stoma,leading to an improvement in its water use efficiency with better survival under drought stress conditions.The leaf area first decreases,and then increases under mild and moderate drought stress conditions,with the average values under different degree of stress found to be approximately 129.52,120.08,116.63 and 107.28 cm2,respectively.Under moderate stress conditions,the leaf water potential appears to show a continuous decline where the average values under different degree of stress are found to be-1.27,-1.85,-4.29 and-4.80 MPa,respectively.In terms of proline content,the results demonstrate that this factor appears to increase significant‐ly under moderate and severe drought stress conditions.Especially under severe drought stress condition,the content is found to be more than 700μg/g.Ranging over average values of 14.64 and 15.90 nmol/g under moderate and severe drought stress,respectively,Malondialdehyde content is found to increase quite rapidly under moderate and severe drought stress conditions at first,which then appears to decrease gradually with the treatment over time. 展开更多
关键词 stomatal morphology drought stress MALONDIALDEHYDE PROLINE Populus euphratica
下载PDF
Characterization of groundwater in the Ejina Basin,northwest China:hydrochemical and environmental isotopes approaches
8
作者 YongHong Su Qi Feng +4 位作者 ZongQiang Chang jianhua si ShengKui Cao HaiYang Xi Rui Guo 《Research in Cold and Arid Regions》 2010年第6期477-492,共16页
To characterize the groundwater in the Ejina Basin,surface and groundwater samples were collected in May and October of 2002.On-site analyses included temperature,electrical conductance(EC),total alkalinity(as HCO 3) ... To characterize the groundwater in the Ejina Basin,surface and groundwater samples were collected in May and October of 2002.On-site analyses included temperature,electrical conductance(EC),total alkalinity(as HCO 3) by titration,and pH.Chemical analyses were undertaken at the Geochemistry Laboratory of the Cold and Arid Region Environmental and Engineering Institute,Chinese Academy of Sciences,Lanzhou,China.The pH of the groundwater ranged from 7.18 to 8.90 with an average value of 7.72,indicating an alkaline nature.The total dissolved solids(TDS) of the groundwater ranged from 567.5 to 5,954.4 mg/L with an average of 1,543.1 mg/L and a standard deviation of 1,471.8 mg/L.According to the groundwater salinity classification of Robinove et al.(1958),47.4 percent of the samples were brackish and the remainder were fresh water.The ion concentration of the groundwater along the riverbed and near the southern margin of the basin were lower than those farther away from the riverbed.The groundwater in the study area was of Na +-HCO 3 type near the bank of the Heihe River and in the southern margin of the basin,while Na +-SO 4 2-Cl type samples were observed in the terminal lake region.In the desert area the groundwater reached a TDS of 3,000-6,000 mg/L and was predominantly by a Na +-Cl chemistry.Br/Cl for the water of Ejina Basin indicates an evaporite origin for the groundwater with a strongly depleted Br/Cl ratio(average 0.000484).The surface water was slightly enriched in Br/Cl(average 0.000711) compared with groundwater.The calculated saturation index(SI) for calcite and dolomite of the groundwater samples range from 0.89 to 1.31 and 1.67 to 2.67 with averaged 0.24 and 0.61,respectively.About 97 percent of the groundwater samples were kinetically oversaturated with respect to calcite and dolomite,and all the samples were below the equilibrium state with gypsum.Using isotope and hydrochemical analyses,this study investigated the groundwater evolution and its residence time.The groundwater content was mainly determined by the dissolutions of halite,gypsum,and Glauber’s salt(Na 2 SO 4),as well as Na + exchange for Ca 2+,and calcite and dolomite precipitation.With the exception of a few locations,most of the groundwater samples were suitable for irrigation uses.Most of the stable isotope compositions in the groundwater sampled plotted close to the Global Meteoric Water Line(GMWL),indicating that the groundwater was mainly sourced from meteoric water.There was evidence of enrichment of heavy isotopes in the groundwater due to evaporation.Based on the tritium content in atmospheric precipitation and by adopting the exponential-piston model(EPM),the mean residence time of the unconfined aquifer groundwater was evaluated.The results show that these groundwaters have low residence time(12 to 48 years) and are renewable.In contrast,the confined groundwater had 14 C ages estimated by the Pearson model between 4,087 to 9,364 years BP.Isotopic signatures indicated formation of deep confined groundwaters in a colder and wetter climate during the late Pleistocene and Holocene. 展开更多
关键词 water chemistry environmental isotope tritium dating technology groundwater recharge Ejina Basin
下载PDF
Nighttime transpiration of Populus euphratica during different phenophases 被引量:7
9
作者 Chunyan Zhao jianhua si +3 位作者 Qi Feng Tengfei Yu Peidu Li Michael A.Forster 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第2期435-444,共10页
Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains l... Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains limited Accordingly, we measured sap flow velocity of Populus euphratica using the heat ratio method between 2012 and2014. Nocturnal stem sap flow was separated into nighttime and stem refilling using the ‘‘forecasted refilling''method. Nighttime transpiration was observed for each phenophase. The highest value was during the full foliation period but lowest during leaf expansion and defoliation periods. The contribution of nighttime transpiration to daytime transpiration was an average of 15% but this was comparatively higher during the defoliation period. Relationships between nighttime transpiration, vapor pressure deficits, and air temperatures were more closely associated than with wind speed in all phenophases. Moreover, we found that nighttime transpiration linearly correlated to vapour pressure deficit during the first and the full foliation periods, but nighttime transpiration showed exponential correlations to air temperatures during the same phenophases. Additionally, environmental drivers of transpiration were significantly different between nighttime and daytime(P \ 0.05). Driving forces behind nighttime transpiration were characterized by many factors, and integrated impacts between these multiple environmental factors were complex. Future studies should focus on these integrated impacts on nighttime transpiration, and the physiological mechanisms of nighttime transpiration should be investigated, given that this could also influence its occurrence and magnitude during different phenophases. 展开更多
关键词 SAP flow NIGHTTIME TRANSPIRATION PHENOPHASE Heat ratio method POPULUS EUPHRATICA
下载PDF
Non-growing season soil CO_2 efflux and its changes in an alpine meadow ecosystem of the Qilian Mountains,Northwest China 被引量:1
10
作者 ZongQiang CHANG XiaoQing LIU +4 位作者 Qi FENG ZongXi CHE HaiYang XI YongHong SU jianhua si 《Journal of Arid Land》 SCIE CSCD 2013年第4期488-499,共12页
Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these syst... Most soil respiration measurements are conducted during the growing season.In tundra and boreal forest ecosystems,cumulative,non-growing season soil CO2 fluxes are reported to be a significant component of these systems' annual carbon budgets.However,little information exists on soil CO2 efflux during the non-growing season from alpine ecosystems.Therefore,comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of estimating ecosystem carbon budgets,as well as predicting the response of soil CO2 efflux to climate changes.In this study,we measured soil CO2 efflux and its spatial and temporal changes for different altitudes during the non-growing season in an alpine meadow located in the Qilian Mountains,Northwest China.Field experiments on the soil CO2 efflux of alpine meadow from the Qilian Mountains were conducted along an elevation gradient from October 2010 to April 2011.We measured the soil CO2 efflux,and analyzed the effects of soil water content and soil temperature on this measure.The results show that soil CO2 efflux gradually decreased along the elevation gradient during the non-growing season.The daily variation of soil CO2 efflux appeared as a single-peak curve.The soil CO2 efflux was low at night,with the lowest value occurring between 02:00-06:00.Then,values started to rise rapidly between 07:00-08:30,and then descend again between 16:00-18:30.The peak soil CO2 efflux appeared from 11:00 to 16:00.The soil CO2 efflux values gradually decreased from October to February of the next year and started to increase in March.Non-growing season Q10 (the multiplier to the respiration rate for a 10℃ increase in temperature) was increased with raising altitude and average Q10 of the Qilian Mountains was generally higher than the average growing season Q10 of the Heihe River Basin.Seasonally,non-growing season soil CO2 efflux was relatively high in October and early spring and low in the winter.The soil CO2 efflux was positively correlated with soil temperature and soil water content.Our results indicate that in alpine ecosystems,soil CO2 efflux continues throughout the non-growing season,and soil respiration is an important component of annual soil CO2 efflux. 展开更多
关键词 non-growing season soil CO2 efflux spatial and temporal variation alpine meadow Q10 values Qilian Mountains
下载PDF
Nutrient status of Populus euphratica growing in desert riparian forests of northwestern China
11
作者 ShengKui Cao Qi Feng +4 位作者 jianhua si XiaoYun Zhang GuangChao Cao KeLong Chen JingFu Zhu 《Research in Cold and Arid Regions》 2012年第4期310-319,共10页
Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian f... Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive. 展开更多
关键词 extreme arid region desert riparian forests Populus euphratica NUTRIENT STATUS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部