期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
1
作者 Qingjia Meng Zhou Jiang jianchun wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
Machine learning in mechanics
2
作者 Xiang Yang jianchun wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期1-2,共2页
Machine learning has attracted much attention in various fields of mechanics. It can represent high-dimensional complex nonlinear systems and has powerful optimization algorithms. So far, machine learning has achieved... Machine learning has attracted much attention in various fields of mechanics. It can represent high-dimensional complex nonlinear systems and has powerful optimization algorithms. So far, machine learning has achieved much success in various mechanical simulation problems, including reconstruction and reduced-order modeling of complex mechanical systems, turbulence modeling and simulation, aerodynamic optimization design for wings, flow control,etc. 展开更多
关键词 HAS LEARNING TURBULENCE
下载PDF
Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence 被引量:7
3
作者 Chenyue Xie jianchun wang +2 位作者 Hui Li Minping Wan Shiyi Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期27-32,共6页
The subgrid-scale(SGS)stress and SGS heat flux are modeled by using an artificial neural network(ANN)for large eddy simulation(LES)of compressible turbulence.The input features of ANN model are based on the first-orde... The subgrid-scale(SGS)stress and SGS heat flux are modeled by using an artificial neural network(ANN)for large eddy simulation(LES)of compressible turbulence.The input features of ANN model are based on the first-order and second-order derivatives of filtered velocity and temperature at different spatial locations.The proposed spatial artificial neural network(SANN)model gives much larger correlation coefficients and much smaller relative errors than the gradient model in an a priori analysis.In an a posteriori analysis,the SANN model performs better than the dynamic mixed model(DMM)in the prediction of spectra and statistical properties of velocity and temperature,and the instantaneous flow structures. 展开更多
关键词 Compressible turbulence Large eddy simulation Artificial neural network
下载PDF
Constraine d large-e ddy simulation of turbulent flow over inhomogeneous rough surfaces 被引量:4
4
作者 Wen Zhang Minping Wan +3 位作者 Zhenhua Xia jianchun wang Xiyun Lu Shiyi Chen 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期37-41,共5页
In this work we extend the method of the constrained large-eddy simulation(CLES)to simulate the tur-bulent flow over inhomogeneous rough walls.In the original concept of CLES,the subgrid-scale(SGS)stress is constraine... In this work we extend the method of the constrained large-eddy simulation(CLES)to simulate the tur-bulent flow over inhomogeneous rough walls.In the original concept of CLES,the subgrid-scale(SGS)stress is constrained so that the mean part and the fluctuation part of the SGS stress can be modelled separately to improve the accuracy of the simulation result.Here in the simulation of the rough-wall flows,we propose to interpret the extra stress terms in the CLES formulation as the roughness-induced stress so that the roughness inhomogeneity can be incorporated by modifying the formulation of the constrained SGS stress.This is examined with the simulations of the channel flow with the spanwise alternating high/low roughness strips.Then the CLES method is employed to investigate the temporal response of the turbulence to the change of the wall condition from rough to smooth.We demonstrate that the temporal development of the internal boundary layer is just similar to that in a spatial rough-to-smooth transition process,and the spanwise roughness inhomogeneity has little impact on the transition process. 展开更多
关键词 Wall turbulence Large-eddy simulation ROUGHNESS INHOMOGENEITY
下载PDF
Recent progress in compressible turbulence 被引量:2
5
作者 Shiyi Chen Zhenhua Xia +1 位作者 jianchun wang Yantao Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期275-291,共17页
In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developin... In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a con- strained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly pro- posed hybrid compact-weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet-turbulence interac- tion, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and for- mulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems. 展开更多
关键词 Compressible turbulence Hybrid compact-WENO scheme Compressibility effect. Lagrangian studyConstrained large eddy simulation
下载PDF
Fourier neural operator approach to large eddy simulation of three-dimensional turbulence 被引量:2
6
作者 Zhijie Li Wenhui Peng +1 位作者 Zelong Yuan jianchun wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期438-444,共7页
Fourier neural operator(FNO)model is developed for large eddy simulation(LES)of three-dimensional(3D)turbulence.Velocity fields of isotropic turbulence generated by direct numerical simulation(DNS)are used for trainin... Fourier neural operator(FNO)model is developed for large eddy simulation(LES)of three-dimensional(3D)turbulence.Velocity fields of isotropic turbulence generated by direct numerical simulation(DNS)are used for training the FNO model to predict the filtered velocity field at a given time.The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag.In the a posteriori study of LES,the FNO model performs better than the dynamic Smagorinsky model(DSM)and the dynamic mixed model(DMM)in the prediction of the velocity spectrum,probability density functions(PDFs)of vorticity and velocity increments,and the instantaneous flow structures.Moreover,the proposed model can significantly reduce the computational cost,and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers. 展开更多
关键词 Fourier neural operator Large eddy simulation Data-driven simulation Incompressible turbulence
下载PDF
取代环己酮还原立体选择性的过渡态理论解释
7
作者 李佳 胡潇 +3 位作者 王健春 于凯歌 耿诗宁 孟祥福 《大学化学》 CAS 2022年第3期171-177,共7页
对于取代环已酮还原产物的立体选择性,仅通过还原试剂的动力学条件和生成产物的热力学稳定性进行预测是不准确的,需要考虑反应过程中存在的其他因素。采用过渡态理论可以对取代环已酮还原产物的立体选择性进行更全面、更准确的预测。一... 对于取代环已酮还原产物的立体选择性,仅通过还原试剂的动力学条件和生成产物的热力学稳定性进行预测是不准确的,需要考虑反应过程中存在的其他因素。采用过渡态理论可以对取代环已酮还原产物的立体选择性进行更全面、更准确的预测。一方面,还原试剂进攻羰基形成过渡态时,表现出决定立体选择性的空间位阻效应和电子效应;另一方面,反应物优势构象,即形成过渡态时的扭转应变和相对于标准对交叉构象偏转角的大小对产物的立体选择性也不容忽视。本文从过渡态形成过程中所体现的空间位阻、电子效应和构象三方面进行讨论,阐述了取代环已酮还原产物的立体选择性。 展开更多
关键词 取代环已酮 还原 立体选择性 过渡态 理论解释
下载PDF
Effect of Multi-parameter Environmental Factors on Cucumber Leaf Surface Wetness
8
作者 Chunyang QIAN jianchun wang +2 位作者 Fengju LI Zhiwen SONG Yan wang 《Agricultural Biotechnology》 CAS 2019年第2期32-34,共3页
In this study, artificial leaf resistance was used to simulate leaf wetness. Specific to the solar greenhouse environment in Tianjin, microclimate monitoring equipment was installed for the collection of temperature g... In this study, artificial leaf resistance was used to simulate leaf wetness. Specific to the solar greenhouse environment in Tianjin, microclimate monitoring equipment was installed for the collection of temperature group and humidity group data, as well as solar radiation and leaf wetness in the greenhouse. In order to reduce the complexity of multivariate factor prediction and ensure the richness of selected data types, correlation analysis was made to the 2 groups of data, screening 5 000 groups of data, including the humidity group data RH, RH_(20), RH_(40), temperature group data T, T_(20), T_(40), and solar radiation W. The data were then analyzed by principal component analysis, screening out 4 groups of principal components to show the leaf wetness index. 展开更多
关键词 CUCUMBER LEAF wetness Principal COMPONENT analysis MULTI-PARAMETER FACTORS
下载PDF
Selection and Design of WSN Node Based on Solar Power in Facility Greenhouse
9
作者 jianchun wang Chunyang QIAN +1 位作者 Yan wang Xuefei ZHANG 《Agricultural Science & Technology》 CAS 2017年第10期1955-1959,共5页
In this study, the green energy saving of greenhouse sensor node is de- signed to reduce the system power consumption and high efficiency. The green renewable solar energy resources are used as the energy source of no... In this study, the green energy saving of greenhouse sensor node is de- signed to reduce the system power consumption and high efficiency. The green renewable solar energy resources are used as the energy source of nodes; the lowenergy consumed and cost effective MSP430 chip is used as the main control chip of the processor unit; the transmission frequency of the wireless transmission unit is 433 MHz, which has the characteristics of low power consumption, high signal strength, long transmission distance and small signal attenuation during the transmission; the power supply system unit is composed of monocrystalline silicon solar panel and high performance rechargeable lithium ion battery. The selection basis of each unit is clarified in detail, and optimization is performed by hardware circuit and software program to further reduce power consumption. The power consumption of the node is calculated by the experiment, and the charging conditions of the solar panel used in the node is tested. The results show that the system can achieve the setting target through the selection and design. 展开更多
关键词 Facility greenhouse Low power consumption WSN node Solar energy
下载PDF
CEPC Technical Design Report 被引量:1
10
作者 Waleed Abdallah Tiago Carlos Adorno de Freitas +1111 位作者 Konstantin Afanaciev Shakeel Ahmad Ijaz Ahmed Xiaocong Ai Abid Aleem Wolfgang Altmannshofer Fabio Alves Weiming An Rui An Daniele Paolo Anderle Stefan Antusch Yasuo Arai Andrej Arbuzov Abdesslam Arhrib Mustafa Ashry Sha Bai Yu Bai Yang Bai Vipul Bairathi Csaba Balazs Philip Bambade Yong Ban Tripamo Bandyopadhyay Shou-Shan Bao Desmond P.Barber Ayse Bat Varvara Batozskaya Subash Chandra Behera Alexander Belyaev Michele Bertucci Xiao-Jun Bi Yuanjie Bi Tianjian Bian Fabrizio Bianchi Thomas Biekotter Michela Biglietti Shalva Bilanishvili Deng Binglin Denis Bodrov Anton Bogomyagkov Serge Bondarenko Stewart Boogert Maarten Boonekamp Marcello Borri Angelo Bosotti Vincent Boudry Mohammed Boukidi Igor Boyko Ivanka Bozovic Giuseppe Bozzi Jean-Claude Brient Anastasiia Budzinskaya Masroor Bukhari Vladimir Bytev Giacomo Cacciapaglia Hua Cai Wenyong Cai Wujun Cai Yijian Cai Yizhou Cai Yuchen Cai Haiying Cai Huacheng Cai Lorenzo Calibbi Junsong Cang Guofu Cao Jianshe Cao Antoine Chance Xuejun Chang Yue Chang Zhe Chang Xinyuan Chang Wei Chao Auttakit Chatrabhuti Yimin Che Yuzhi Che Bin Chen Danping Chen Fuqing Chen Fusan Chen Gang Chen Guoming Chen Hua-Xing Chen Huirun Chen Jinhui Chen Ji-Yuan Chen Kai Chen Mali Chen Mingjun Chen Mingshui Chen Ning Chen Shanhong Chen Shanzhen Chen Shao-Long Chen Shaomin Chen Shiqiang Chen Tianlu Chen Wei Chen Xiang Chen Xiaoyu Chen Xin Chen Xun Chen Xurong Chen Ye Chen Ying Chen Yukai Chen Zelin Chen Zilin Chen Gang Chen Boping Chen Chunhui Chen Hok Chuen Cheng Huajie Cheng Shan Cheng Tongguang Cheng Yunlong Chi Pietro Chimenti Wen Han Chiu Guk Cho Ming-Chung Chu Xiaotong Chu Ziliang Chu Guglielmo Coloretti Andreas Crivellin Hanhua Cui Xiaohao Cui Zhaoyuan Cui Brunella D'Anzi Ling-Yun Dai Xinchen Dai Xuwen Dai Antonio De Maria Nicola De Filippis Christophe De La Taille Francesca De Mori Chiara De Sio Elisa Del Core Shuangxue Deng Wei-Tian Deng Zhi Deng Ziyan Deng Bhupal Dev Tang Dewen Biagio Di Micco Ran Ding Siqin Dingl Yadong Ding Haiyi Dong Jianing Dong Jing Dong Lan Dong Mingyi Dong Xu Dong Yipei Dong Yubing Dong Milos Dordevic Marco Drewes Mingxuan Du Mingxuan Du Qianqian Du Xiaokang Du Yanyan Du Yong Du Yunfei Du Chun-Gui Duan Zhe Duan Yahor Dydyshka Ulrik Egede Walaa Elmetenawee Yun Eo Ka Yan Fan Kuanjun Fan Yunyun Fan Bo Fang Shuangshi Fang Yuquan Fang Ada Farilla Riccardo Farinelli Muhammad Farooq Angeles Faus Golfe Almaz Fazliakhmetov Rujun Fei Bo Feng Chong Feng Junhua Feng Xu Feng Zhuoran Feng Zhuoran Feng Luis Roberto Flores Castillo Etienne Forest Andrew Fowlie Harald Fox Hai-Bing Fu Jinyu Fu Benjamin Fuks Yoshihiro Funakoshi Emidio Gabrielli Nan Gan Li Gang Jie Gao Meisen Gao Wenbin Gao Wenchun Gao Yu Gao Yuanning Gao Zhanxiang Gao Yanyan Gao Kun Ge Shao-Feng Ge Zhenwu Ge Li-Sheng Geng Qinglin Geng Chao-Qiang Geng Swagata Ghosh Antonio Gioiosa Leonid Gladilin Ti Gong Stefania Gori Quanbu Gou Sebastian Grinstein Chenxi Gu Gerardo Guillermo Joao Guimaraes da Costa Dizhou Guo Fangyi Guo Jiacheng Guo Jun Guo Lei Guo Lei Guo Xia Guo Xin-Heng Guo Xinyang Guo Yun Guo Yunqiang Guo Yuping Guo Zhi-Hui Guo Alejandro Gutierrez-Rodriguez Seungkyu Ha Noman Habib Jan Hajer Francois Hammer Chengcheng Han Huayong Han Jifeng Han Liang Han Liangliang Han Ruixiong Han Yang Han Yezi Han Yuanying Han Tao Han Jiankui Hao Xiqing Hao Xiqing Hao Chuanqi He Dayong He Dongbing He Guangyuan He Hong-Jian He Jibo He Jun He Longyan He Xiang He Xiao-Gang He Zhenqiang He Klaus Heinemann Sven Heinemeyer Yuekun Heng Maria A.Hernandez-Ruiz Jiamin Hong Yuenkeung Hor George W.S.Hou Xiantao Hou Xiaonan Hou Zhilong Hou Suen Hou Caishi Hu Chen Hu Dake Hu Haiming Hu Jiagen Hu Jun Hu Kun Hu Shouyang Hu Yongcai Hu Yu Hu Zhen Hu Zhehao Hua Jianfei Hua Chao-Shang Huang Fa Peng Huang Guangshun Huang Jinshu Huang Ke Huang Liangsheng Huang Shuhui Huang Xingtao Huang Xu-Guang Huang Yanping Huang Yonggang Huang Yongsheng Huang Zimiao Huang Chen Huanyuan Changgi Hua Jiaqi Hui Lihua Huo Talab Hussain Kyuyeong Hwang Ara loannisian Munawar Iqbal Paul Jackson Shahriyar Jafarzade Haeun Jang Seoyun Jang Daheng Ji Qingping Ji Quan Ji Xiaolu Ji Jingguang Jia Jinsheng Jia Xuewei Jia Zihang Ja Cailian Jiang Han Ren Jiang Houbing Jiang Jun Jiang Xiaowei Jiang Xin Jiang Xuhui Jiang Yongcheng Jiang Zhongjian Jiang Cheng Jiang Ruiqi Jiao Dapeng Jin Shan Jin Song Jin Yi Jin Junji Jis Sunghoon Jung Goran Kacarevic Eric Kajfasz Lidia Kalinovskaya Aleksei Kampf Wen Kang Xian-Wei Kang Xiaolin Kang Biswajit Karmakar Zhiyong Ke Rijeesh Keloth Alamgir Khan Hamzeh Khanpour Khanchai Khosonthongkee KhanchaiKhosonthongkee Bobae Kim Dongwoon Kim Mi Ran Kim Minsuk Kim Sungwon Kim On Kim Michael Klasen Sanghyun Ko Ivan Koop Vitaliy Kornienko Bryan Kortman Gennady Kozlov Shiqing Kuang Mukesh Kumar Chia Ming Kuo Tsz Hong Kwok Fran cois Sylvain Ren Lagarde Pei-Zhu Lai Imad Laktineh Xiaofei Lan Zuxiu Lan Lia Lavezzi Justin Lee Junghyun Lee Sehwook Lee Ge Lei Roy Lemmon longxiang Leng Sze Ching Leung Hai Tao Li Bingzhi Li Bo Li Bo Li Changhong Li Chao Li Cheng Li Cheng Li Chunhua Li Cui Li Dazhang Li Dikai Li Fei Li Gang Li Gang Li Gang Li Gaosong Li Haibo Li Haifeng Li Hai-Jun Li Haotian Li Hengne Li Honglei Li Huijing Li Jialin Li Jingyi Li Jinmian Li Jun Li Leyi Li Liang Li Ling Li Mei Li Meng Li Minxian Li Pei-Rong Li Qiang Li Shaopeng Li Shenghe Li Shu Li Shuo Li Teng Li Tiange Li Tong Li Weichang Li Weidong Li Wenjun Li Xiaoling Li Xiaomei Li Xiaonan Li Xiaoping Li Xiaoting Li Xin Li Xinqiang Li Xuekang Li Yang Li Yanwei Li Yiming Li Ying Li Ying-Ying Li Yonggang Li Yonglin Li Yufeng Li Yuhui Li Zhan Li Zhao Li Zhiji Li Tong Li Lingfeng Li Fei Li Jing Liang Jinhan Liang Zhijun Liang Guangrui Liao Hean Liao Jiajun Liao Libo Liao Longzhou Liao Yi Liao Yipu Liao Ayut Limphirat AyutLimphirat Tao Lin Weiping Lin Yufu Lin Yugen Lin Beijiang Liu Bo Liu Danning Liu Dong Liu Fu-Hu Liu Hongbang Liu Huangcheng Liu Hui Liu Huiling Liu Jia Liu Jia Liu Jiaming Liu Jianbei Liu Jianyi Liu Jingdong Liu Jinhua Liu Kai Liu Kang Liu Kun Liu Mengyao Liu Peng Liu Pengcheng Liu Qibin Liu Shan Liu Shidong Liu Shuang Liu Shubin Liu Tao Liu Tao Liu Tong Liu Wei Liu Xiang Liu Xiao-Hai Liu Xiaohui Liu Xiaoyu Liu Xin Liu Xinglin Liu Xingquan Liu Yang Liu Yanlin Liu Yao-Bei Liu Yi Liu Yiming Liu Yong Liu Yonglu Liu Yu Liu Yubin Liu Yudong Liu Yulong Liu Zhaofeng Liu Zhen Liu Zhenchao Liu Zhi Liu Zhi-Feng Liu Zhiqing Liu Zhongfu Liu Zuowei Liu Mia Liu Zhen Liu Xiaoyang Liu Xinchou Lou Cai-Dian Lu Jun-Xu Lu Qiu Zhen Lu Shang Lu Shang Lu Wenxi Lu Xiaohan Lu Yunpeng Lu Zhiyong Lu Xianguo Lu Wei Lu Bayarto Lubsandorzhiev Sultim Lubsandorzhiev Arslan Lukanov Jinliang Luo Tao Luo xiaoan Luo Xiaofeng Luo Xiaolan Luo Jindong Lv Feng Lyu Xiao-Rui Lyu Kun-Feng Lyu Ande Ma Hong-Hao Ma Jun-Li Ma Kai Ma Lishuang Ma Na Ma Renjie Ma Weihu Ma Xinpeng Ma Yanling Ma Yan-Qing Ma Yongsheng Ma Zhonghui Ma Zhongjian Ma Yang Ma Mousam Maity Lining Mao Yanmin Mao Yaxian Mao Aure lien Martens Caccia Massimo Luigi Maria Shigeki Matsumoto Bruce Mellado Davide Meloni Lingling Men Cai Meng Lingxin Meng Zhenghui Mi Yuhui Miao Mauro Migliorati Lei Ming Vasiliki A.Mitsou Laura Monaco Arthur Moraes Karabo Mosala Ahmad Moursy Lichao Mu Zhihui Mu Nickolai Muchnoi Daniel Muenstermann DanielMuenstermann Pankaj Munbodh William John Murray Jerome Nanni Dmitry Nanzanov Changshan Nie Sergei Nikitin Feipeng Ning Guozhu Ning Jia-Shu Niu Juan-Juan Niu Yan Niu Edward Khomotso Nkadimeng Kazuhito Ohmi Katsunobu Oide Hideki Okawa Mohamed Ouchemhou Qun Ouyang Daniele Paesani Carlo Pagani Stathes Paganis Collette Pakuza Jiangyang Pan Juntong Pan Tong Pan Xiang Pan Papia Panda Saraswati Pandey Mila Pandurovic Rocco Paparella Roman Pasechnik Emilie Passemar r Hua Pei Xiaohua Peng Xinye Peng Yuemei Peng Jialun Ping Ronggang Ping Souvik Priyam Adhya Baohua Qi Hang Qi Huirong Qi Ming Qi Sen Qian Zhuoni Qian Congfeng Qiao Guangyou Qin Jiajia Qin Laishun Qin Liqing Qin Qin Qin Xiaoshuai Qin Zhonghua Qin Guofeng Qu Antonio Racioppi Michael Ramsey-Musolf Shabbar Raza Vladimir Rekovic Jing Ren Jirgen Reuter Tania Robens Giancarlo Rossi Manqi Ruan Manqi Ruan Leonid Rumyantsev Min Sang Ryu Renat Sadykov Minjing Sang Juan Jose Sanz-Cillero Miroslav Saur Nishil Savla Michael A.Schmidt Daniele Sertore Ron Settles Peng Sha Ding-Yu Shao Ligang Shao Hua-Sheng Shao Xin She Chuang Shen Hong-Fei Shen Jian-Ming Shen Peixun Shen Qiuping Shen Zhongtao Shen Shuqi Sheng Haoyu Shi Hua Shi Qi Shi Shusu Shi Xiaolei Shi Xin Shi Yukun Shi Zhan Shi Ian Shipsey Gary Shiu Chang Shu Zong-Guo Si Andrei Sidorenkov Ivan Smiljanc Aodong Song Huayang Song Jiaojiao Song Jinxing Song Siyuan Song Weimin Song Weizheng Song Zhi Song Shashwat Sourav Paolo Spruzzola Feng Su Shengsen Su Wei Su Shufang Su Yanfeng Sui Zexuan Sui Michael Sullivan Baiyang Sun Guoqiang Sun Hao Sun Hao-Kai Sun Junfeng Sun Liang Sun Mengcheng Sunl Pengfei Sun Sichun Sun Xianjing Sun Xiaohu Sun Xilei Sun Xingyang Sun Xin-Yuan Sun Yanjun Sun Yongzhao Sun Yue Sun Zheng Sun Zheng Sun Narumon Suwonjandee Elsayed Tag Eldin Biao Tan Bo Tang Chuanxiang Tang Gao Tang Guangyi Tang Jian Tang Jingyu Tang Liang Tang Ying'Ao Tang Junquan Tao Abdel Nasser Taw fik Geoffrey Taylor Valery Telnov Saike Tian Riccardo Torre Wladyslaw Henryk Trzaska Dmitri Tsybychev Yanjun Tu Shengquan Tuo Michael Tytgat Ghalib Ul Islam Nikita Ushakov German Valencia Jaap Velthuis Alessandro Vicini Trevor Vickey Ivana Vidakovic Henri Videau Raymond Volkas Dmitry Voronin Natasa Vukasinovic Xia Wan Xuying Wan Xiao wang Anqing wang Bin wang Chengtao wang Chuanye wang Ci wang Dayong wang Dou wang En wang Fei wang Fei wang Guanwen wang Guo-Li wang Haijing wang Haolin wang Jia wang Jian wang jianchun wang Jianli wang Jiawei wang Jin wang Jin-Wei wang Joseph wang Kechen wang Lechun wang Lei wang Liguo wang Lijiao wang Lu wang Meng wang Na wang Pengcheng wang Qian wang Qun wang Shu Lin wang Shudong wang Taofeng wang Tianhong wang Tianyang wang Tong wang Wei wang Wei wang Xiaolong wang Xiaolong wang Xiaoning wang Xiao-Ping wang Xiongfei wang Xujian wang Yaping wang Yaqian wang Yi wang Yiao wang Yifang wang Yilun wang Yiwei wang You-Kai wang Yuanping wang Yuexin wang Yuhao wang Yu-Ming wang Yuting wang Zhen wang Zhigang wang Weiping wang Zeren Simon wang Biao wang Hui wang Lian-Tao wang Zihui wang Zirui wang Jia wang Tong wang Daihui Wei Shujun Wei Wei Wei Xiaomin Wei Yuanyuan Wei Yingjie Wei Liangjian Wen Xuejun Wen Yufeng Wen Martin White Peter Williams Zef Wolffs William John Womersley Baona Wu Bobing Wu Guanjian Wu Jinfei Wu Lei Wu Lina Wu Linghui Wu Minlin Wu Peiwen Wu Qi Wu Qun Wu Tianya Wu Xiang Wu Xiaohong Wu Xing-Gang Wu Xuehui Wu Yaru Wu Yongcheng Wu Yuwen Wu Zhi Wu Xin Wu Lei Xia Ligang Xia Shang Xia Benhou Xiang Dao Xiang Zhiyu Xiang Bo-Wen Xiao Chu-Wen Xiao Dong Xiao Guangyan Xiao Han Xiao Meng Xiao Ouzheng Xiao Rui-Qing Xiao Xiang Xiao Yichen Xiao Ying Xiao Yu Xiao Yunlong Xiao Zhenjun Xiao Hengyuan Xiao Nian Xie Yuehong Xie Tianmu Xin Ye Xing Zhizhong Xing Da Xu Fang Xu Fanrong Xu Haisheng Xu Haocheng Xu Ji Xu Miaofu Xu Qingjin Xu Qingnian Xu Wei Xu Wei Xu Weixi Xu Xinping Xu Zhen Xu Zijun Xu Zehua Xu Yaoyuan Xu Feifei Xue Baojun Yan Bin Yan Fen Yan Fucheng Yan Jiaming Yan Liang Yan Luping Yan Qi-Shu Yan Wenbiao Yan Yupeng Yan Luping Yan Haoyue Yan Dong Yang Fengying Yang Guicheng Yang Haijun Yang Jin Min Yang Jing Yang Lan Yang Li Yang Li Lin Yang Lili Yang Litao Yang Mei Yang Qiaoli Yang Tiansen Yang Xiaochen Yang Yingjun Yang Yueling Yang Zhengyong Yang Zhenwei Yang Youhua Yang Xiancong Yang De-Liang Yao Shi Yao Lei Ye Lingxi Ye Mei Ye Rui Ye Rui Ye Yecheng Ye Vitaly Yermolchyk Kai Yi Li Yi Yang Yi Di Yin Peng-Fei Yin Shenghua Yin Ze Yin Zhongbao Yin Zhang Yinhong Hwi Dong Yoo Zhengyun You Charles Young Boxiang Yu Chenghui Yu Fusheng Yu Jie-Sheng Yu Jinqing Yu Lingda Yu Zhao-Huan Yu Felix Yu Bingrong Yu Changzheng Yuan Li Yuan Xing-Bo Yuan Youjin Yuan Junhui Yue Qian Yue Baobiao Yue Un Nisa Zaib Riccardo Zanzottera Hao Zeng Ming Zeng Jian Zhai Jiyuan Zhai Xin Zhe Zhai Xi-Jie Zhan Ben-Wei Zhang Bolun Zhang Di Zhang Guangyi Zhang Hao Zhang Hong-Hao Zhang Huaqiao Zhang Hui Zhang Jialiang Zhang Jianyu Zhang Jianzhong Zhang Jiehao Zhang Jielei Zhang Jingru Zhang Jinxian Zhang Junsong Zhang Junxing Zhang Lei Zhang Lei Zhang Liang Zhang Licheng Zhang Liming Zhang Linhao Zhang Luyan Zhang Mengchao Zhang Rao Zhang Shulei Zhang Wan Zhang Wenchao Zhang Xiangzhen Zhang Xiaomei Zhang Xiaoming Zhang Xiaoxu Zhang Xiaoyu Zhang Xuantong Zhang Xueyao Zhang Yang Zhang Yang Zhang Yanxi Zhang Yao Zhang Ying Zhang Yixiang Zhang Yizhou Zhang Yongchao Zhang Yu Zhang Yuan Zhang Yujie Zhang Yulei Zhang Yumei Zhang Yunlong Zhang Zhandong Zhang Zhaoru Zhang Zhen-Hua Zhang Zhenyu Zhang Zhichao Zhang Zhi-Qing Zhang Zhuo Zhang Zhiqing Zhang Cong Zhang Tianliang Zhang Luyan Zhang Guang Zhao Hongyun Zhao Jie Zhao Jingxia Zhao Jingyi Zhao Ling Zhao Luyang Zhao Mei Zhao Minggang Zhao Mingrui Zhao Qiang Zhao Ruiguang Zhao Tongxian Zhao Yaliang Zhao Ying Zhao Yue Zhao Zhiyu Zhao Zhuo Zhao Alexey Zhemchugov Hongjuan Zheng Jinchao Zheng Liang Zheng Ran Zheng shanxi zheng Xu-Chang Zheng wang Zhile Weicai Zhong Yi-Ming Zhong Chen Zhou Daicui Zhou Jianxin Zhou Jing Zhou Jing Zhou Ning Zhou Qi-Dong Zhou Shiyu Zhou Shun Zhou Sihong Zhou Xiang Zhou Xingyu Zhou Yang Zhou Yong Zhou Yu-Feng Zhou Zusheng Zhou Demin Zhou Dechong Zhu Hongbo Zhu Huaxing Zhu Jingya Zhu Kai Zhu Pengxuan Zhu Ruilin Zhu Xianglei Zhu Yingshun Zhu Yongfeng Zhu Xiao Zhuang Xuai Zhuang Mikhail Zobov Zhanguo Zong Cong Zou Hongying Zou 《Radiation Detection Technology and Methods》 CSCD 2024年第1期I0003-I0016,1-1091,共1105页
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3... The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s. 展开更多
关键词 initiated EXCEEDING PRECISE
原文传递
Sarmentosin Induces Autophagy-dependent Apoptosis via Activation of Nrf2 in Hepatocellular Carcinoma
11
作者 Zhitao Jiang Liyuan Gao +3 位作者 Chundi Liu jianchun wang Yi Han Jinhuo Pan 《Journal of Clinical and Translational Hepatology》 SCIE 2023年第4期863-876,共14页
Background and Aims:Hepatocellular carcinoma(HCC)is a common and deadly cancer.Accumulating evidence supports modulation of autophagy as a novel approach for determining cancer cell fate.The aim of this study to evalu... Background and Aims:Hepatocellular carcinoma(HCC)is a common and deadly cancer.Accumulating evidence supports modulation of autophagy as a novel approach for determining cancer cell fate.The aim of this study to evaluate the effectiveness of sarmentosin,a natural compound,on HCC in vitro and in vivo and elucidated the underlying mechanisms.Methods:Cell functions and signaling pathways were analyzed in HepG2 cells using western blotting,real-time PCR,siRNA,transmission electron microscopy and flow cytometry.BALB/c nude mice were injected with HepG2 cells to produce a xenograft tumour nude mouse model for in vivo assessments and their tumors,hearts,lungs and kidneys were isolated.Results:We found that autophagy was induced by sarmentosin in a concentration-and timedependent manner in human HCC HepG2 cells by western blot assays and scanning electron microscopy.Sarmentosin-induced autophagy was abolished by the autophagy inhibitors 3-methyladenine,chloroquine,and bafilomycin A1.Sarmentosin activated Nrf2 in HepG2 cells,as shown by increased nuclear translocation and upregulated expression of Nrf2 target genes.Phosphorylation of mTOR was also inhibited by sarmentosin.Sarmentosin stimulated caspasedependent apoptosis in HepG2 cells,which was impaired by silencing Nrf2 or chloroquine or knocking down ATG7.Finally,sarmentosin effectively repressed HCC growth in xenograft nude mice and activated autophagy and apoptosis in HCC tissues.Conclusions:This study showed sarmentosin stimulated autophagic and caspase-dependent apoptosis in HCC,which required activation of Nrf2 and inhibition of mTOR.Our research supports Nrf2 as a therapeutic target for HCC and sarmentosin as a promising candidate for HCC chemotherapy. 展开更多
关键词 Hepatocellular carcinoma Sarmentosin AUTOPHAGY APOPTOSIS NRF2
原文传递
Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence 被引量:2
12
作者 Zelong Yuan Yunpeng wang +1 位作者 Chenyue Xie jianchun wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第12期1773-1785,共13页
We establish a deconvolutional artificial-neural-network(D-ANN)approach in large-eddy simulation(LES)of compressible turbulent flow.Filtered variables in the neighboring locations are taken as the inputs of D-ANN to r... We establish a deconvolutional artificial-neural-network(D-ANN)approach in large-eddy simulation(LES)of compressible turbulent flow.Filtered variables in the neighboring locations are taken as the inputs of D-ANN to recover original(unfiltered)variables,including density,momentum and pressure.The scale-similarity form is adopted to reconstruct subfilter-scale(SFS)terms.The proposed D-ANN models can give better a priori predictions of the sub-filter stress and heat flux than the classical approximate-deconvolution method(ADM)and the velocity-gradient model(VGM).The predicted SFS terms with the D-ANN models have correlation coefficients larger than 98.4%and relative errors smaller than 18%.In the a posteriori analysis,the D-ANN model compares against the implicit LES(ILES),the dynamic-Smagorinsky model(DSM),and the dynamic-mixed model(DMM).The D-ANN model predicts better than these classical models for velocity spectra,statistical properties of SFS kinetic energy flux and velocity increments.The turbulence statistics and transient velocity divergence are also accurately reconstructed.The type of explicit filter and the impact of compressibility do not significantly affect a posteriori accuracy of the D-ANN model.Results showthat the proposed D-ANN approach has a great potential in developing highly accurate SFS models for large-eddy simulation of complex compressible turbulent flow. 展开更多
关键词 Subfilter-scale model Large-eddy simulation Artificial neural network Machine learning Compressible turbulence
原文传递
碘氧化铋光催化剂的合成、改性及净化一氧化氮 被引量:2
13
作者 周汉强 于明飞 +2 位作者 陈巧珊 王建春 毕进红 《化学进展》 SCIE CAS CSCD 北大核心 2021年第12期2404-2412,共9页
光催化技术因其节能、高效、无二次污染等特点,在低浓度一氧化氮(NO)污染治理方面展现出了巨大潜力。在众多半导体材料中,碘氧化铋(BiOI)光催化剂具有窄带隙和独特的层状结构,有利于可见光吸收和电子空穴对分离,展现出了良好的光催化活... 光催化技术因其节能、高效、无二次污染等特点,在低浓度一氧化氮(NO)污染治理方面展现出了巨大潜力。在众多半导体材料中,碘氧化铋(BiOI)光催化剂具有窄带隙和独特的层状结构,有利于可见光吸收和电子空穴对分离,展现出了良好的光催化活性和稳定性,近十几年来备受关注。本文综述了BiOI半导体材料光催化净化NO的最新研究进展,阐述了BiOI晶体形貌与晶面调控对其光催化性能的影响;重点介绍了各类改性方法如表面修饰、离子掺杂、异质结构筑等对BiOI光催化活性的提升机制,并提出了该研究方向所面临的挑战与应用前景,旨在为设计高活性BiOI基光催化材料以及高效处理低浓度NO污染提供理论借鉴与技术支撑。 展开更多
关键词 碘氧化铋 一氧化氮 光催化 大气污染
原文传递
Microfluidic Device: A Miniaturized Platform for Chemical Reactions 被引量:1
14
作者 Qin Tu Long Pang +5 位作者 Yanrong Zhang Maoseng Yuan jianchun wang Dongen wang Wenming Liu Jinyi wang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2013年第3期304-316,共13页
Microfluidic devices, as a new miniaturized platform stemming from the field of micro-electromechanical sys-tems, have been used in many disciplines. In the field of chemical reactions, microfluidic device-based micro... Microfluidic devices, as a new miniaturized platform stemming from the field of micro-electromechanical sys-tems, have been used in many disciplines. In the field of chemical reactions, microfluidic device-based microreac-tors have shown great promise in building new chemical technologies and processes with increased speed and reli- ability and reduced sample consumption and cost. This technology has also become a new and effective tool for precise, high-throughput, and automatic analysis of chemical synthesis processes. Compared with conventional chemical laboratory batch methodologies, microfluidic reactors have a number of features, such as high mixing ef- ficiency, short reaction time, high heat-transfer coefficient, small reactant volume, controllable residence time, and high surface-to-volume ratio, among others. Combined with recent advances in microfluidic devices for chemical reactions, this review aims to give an overview of the features and applications of microfluidic devices in the field of chemical synthesis. It also aims to stimulate the development of microfluidic device applications in the field of chemical reactions. 展开更多
关键词 microfluidic device MICROREACTOR chemical reaction
原文传递
A Hybrid Numerical Simulation of Supersonic IsotropicTurbulence 被引量:1
15
作者 Luoqin Liu jianchun wang +2 位作者 Yipeng Shi Shiyi Chen X.T.He 《Communications in Computational Physics》 SCIE 2019年第1期189-217,共29页
This paper presents an extension work of the hybrid scheme proposed by Wang et al.[J.Comput.Phys.229(2010)169-180]for numerical simulation of sub-sonic isotropic turbulence to supersonic turbulence regime.The scheme s... This paper presents an extension work of the hybrid scheme proposed by Wang et al.[J.Comput.Phys.229(2010)169-180]for numerical simulation of sub-sonic isotropic turbulence to supersonic turbulence regime.The scheme still utilizes an 8th-order compact scheme with built-in hyperviscosity for smooth regions and a 7th-order WENO scheme for highly compression regions,but now both in their con-servation formulations and for the latter with the Roe type characteristic-wise recon-struction.To enhance the robustness of the WENO scheme without compromising its high-resolution and accuracy,the recursive-order-reduction procedure is adopted,where a new type of reconstruction-failure-detection criterion is constructed from the idea of positivity-preserving.In addition,a new form of cooling function is proposed,which is proved also to be positivity-preserving.With a combination of these techniques,the new scheme not only inherits the good properties of the original one but also extends largely the computable range of turbulent Mach number,which has been further confirmed by numerical results. 展开更多
关键词 Supersonic turbulence hybrid scheme positivity-preserving ROR-WENO scheme compact scheme
原文传递
Curvature estimate of steepest descents of 2-dimensional maximal space-like hyper surfaces on space forms
16
作者 Peihe wang jianchun wang 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第1期167-181,共15页
For the maximal space-like hypersurface defined on 2-dimensional space forms,based on the regularity and the strict convexity of the level sets,the steepest descents are well defined.In this paper,we come to estimate ... For the maximal space-like hypersurface defined on 2-dimensional space forms,based on the regularity and the strict convexity of the level sets,the steepest descents are well defined.In this paper,we come to estimate the curvature of its steepest descents by deriving a differential equality. 展开更多
关键词 SPACE forms steepest DESCENTS MAXIMAL space-like HYPERSURFACE
原文传递
Dynamic nonlinear algebraic models with scale-similarity dynamic procedure for large-eddy simulation of turbulence
17
作者 Zelong Yuan Yunpeng wang +1 位作者 Chenyue Xie jianchun wang 《Advances in Aerodynamics》 2022年第1期304-326,共23页
A dynamic nonlinear algebraic model with scale-similarity dynamic procedure(DNAM-SSD)is proposed for subgrid-scale(SGS)stress in large-eddy simulation of turbulence.The model coefficients of the DNAM-SSD model are ada... A dynamic nonlinear algebraic model with scale-similarity dynamic procedure(DNAM-SSD)is proposed for subgrid-scale(SGS)stress in large-eddy simulation of turbulence.The model coefficients of the DNAM-SSD model are adaptively calculated through the scale-similarity relation,which greatly simplifies the conventional Germano-identity based dynamic procedure(GID).The a priori study shows that the DNAM-SSD model predicts the SGS stress considerably better than the conventional velocity gradient model(VGM),dynamic Smagorinsky model(DSM),dynamic mixed model(DMM)and DNAM-GID model at a variety of filter widths ranging from inertial to viscous ranges.The correlation coefficients of the SGS stress predicted by the DNAM-SSD model can be larger than 95%with the relative errors lower than 30%.In the a posteriori testings of LES,the DNAM-SSD model outperforms the implicit LES(ILES),DSM,DMM and DNAM-GID models without increasing computational costs,which only takes up half the time of the DNAM-GID model.The DNAM-SSD model accurately predicts plenty of turbulent statistics and instantaneous spatial structures in reasonable agreement with the filtered DNS data.These results indicate that the current DNAM-SSD model is attractive for the development of highly accurate SGS models for LES of turbulence. 展开更多
关键词 Subgrid-scale model Nonlinear algebraic model Large-eddy simulation Incompressible turbulence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部