期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Regulation of Cytokinesis by Exocyst Subunit SEC6 and KEULE in Arabidopsis thaliana 被引量:7
1
作者 jiandong wu xiaoyun tan chengyunwu kun cao yiqun bao 《Molecular Plant》 SCIE CAS CSCD 2013年第6期1863-1876,共14页
Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formati... Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formation, but the exact mechanisms still remain to be explored. In this study, using yeast two-hybrid (Y-2-H) assay, we found that SEC6 interacted with KEULE, and that a small portion of C-terminal region of KEULE was required for the interaction. The direct SEC6-KEULE interaction was supported by further studies using in vitro pull-down assay, immunoprecipitation, and in vivo bimolecular florescence complementation (BIFC) microscopy, sec6 mutants were male gametophytic lethal as reported; however, pollen-rescued sec6 mutants (PRsec6) displayed cytokinesis defects in the embryonic cells and later in the leaf pavement cells and the guard cells. SEC6 and KEULE proteins were co-localized to the cell plate during cytokine- sis in transgenic Arabidopsis. Furthermore, only SEC6 but not other exocyst subunits located in the cell plate interacted with KEULE in vitro. These results demonstrated that, like KEULE, SEC6 plays a physiological role in cytokinesis, and the SEC6-KEULE interaction may serve as a novel molecular linkage between arriving vesicles and membrane fusion machin- ery or directly regulate membrane fusion during cell plate formation in plants. 展开更多
关键词 SEC6 KEULE CYTOKINESIS vesicle tethering membrane fusion EMBRYOGENESIS plant development.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部