An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric paramete...An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric parameters are obtained,such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz(relative bandwidth of 156.7%)for both transverse electricity and transverse magnetic waves.Moreover,impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis.The compatibility of equivalent circuit calculation results,together with both full-wave simulation and experimental results,demonstrates the excellent performance and applicability of the proposed metamaterial absorber.展开更多
Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveg...Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveguides and ferrite disks to support non-reciprocal mode coupling.The simulated performance of symmetrically designed circulator shows that it has an insertion loss of roughly 0.5 dB while the isolation and return loss is more than 12 dB in the frequency range of 6.0 GHz–10.0 GHz(relative bandwidth of 50%).Equivalent circuit model has been proposed to explain the operating mechanism of the plasmonic circulator.The equivalent circuit model,numerical simulations,and experimental results are consistent with each other,which demonstrates the good performance of the proposed plasmonic circulator.展开更多
Electromagnetic topological chiral edge states mimicking the quantum Hall effect have attracted a great deal of attention due to their unique features of free backscattering and immunity against sharp bends and defect...Electromagnetic topological chiral edge states mimicking the quantum Hall effect have attracted a great deal of attention due to their unique features of free backscattering and immunity against sharp bends and defects.However,the matching techniques between classical waveguides and the topological one-way waveguide deserve more attention for real-world applications.In this paper,a highly efficient conversion structure between a classical rectangular waveguide and a topological one-way waveguide is proposed and demonstrated at the microwave frequency,which efficiently converts classical guided waves to topological one-way edge states.A tapered transition is designed to match both the momentum and impedance of the classical guided waves and the topological one-way edge states.With the conversion structure,the waves generated by a point excitation source can be coupled to the topological one-way waveguide with very high coupling efficiency,which can ensure high transmission of the whole system(i.e.,from the source and the receiver).Simulation and measurement results demonstrate the proposed method.This investigation is beneficial to the applications of topological one-way waveguides and opens up a new avenue for advanced topological and classical integrated functional devices and systems.展开更多
基金Supported by the Six Talent Peaks Project in Jiangsu Province(Grant No.XYDXX-072)the National Natural Science Foundation of China(Grant Nos.61372048 and 61771226)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161186).
文摘An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric parameters are obtained,such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz(relative bandwidth of 156.7%)for both transverse electricity and transverse magnetic waves.Moreover,impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis.The compatibility of equivalent circuit calculation results,together with both full-wave simulation and experimental results,demonstrates the excellent performance and applicability of the proposed metamaterial absorber.
基金Project supported by the Six-Talent-Peaks Project in Jiangsu Province of China(Grant No.XYDXX-072)the National Natural Science Foundation of China(Grant No.61372048).
文摘Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveguides and ferrite disks to support non-reciprocal mode coupling.The simulated performance of symmetrically designed circulator shows that it has an insertion loss of roughly 0.5 dB while the isolation and return loss is more than 12 dB in the frequency range of 6.0 GHz–10.0 GHz(relative bandwidth of 50%).Equivalent circuit model has been proposed to explain the operating mechanism of the plasmonic circulator.The equivalent circuit model,numerical simulations,and experimental results are consistent with each other,which demonstrates the good performance of the proposed plasmonic circulator.
基金supported by the National Natural Science Foundation of China(No.62171082)the Natural Science Foundation of Sichuan Province(No.2022NSFSC0483)。
文摘Electromagnetic topological chiral edge states mimicking the quantum Hall effect have attracted a great deal of attention due to their unique features of free backscattering and immunity against sharp bends and defects.However,the matching techniques between classical waveguides and the topological one-way waveguide deserve more attention for real-world applications.In this paper,a highly efficient conversion structure between a classical rectangular waveguide and a topological one-way waveguide is proposed and demonstrated at the microwave frequency,which efficiently converts classical guided waves to topological one-way edge states.A tapered transition is designed to match both the momentum and impedance of the classical guided waves and the topological one-way edge states.With the conversion structure,the waves generated by a point excitation source can be coupled to the topological one-way waveguide with very high coupling efficiency,which can ensure high transmission of the whole system(i.e.,from the source and the receiver).Simulation and measurement results demonstrate the proposed method.This investigation is beneficial to the applications of topological one-way waveguides and opens up a new avenue for advanced topological and classical integrated functional devices and systems.