期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Specific pupylation as IDEntity reporter(SPIDER)for the identification of protein-biomolecule interactions
1
作者 He-Wei Jiang Hong Chen +26 位作者 Yun-Xiao Zheng Xue-Ning Wang Qingfeng Meng Jin Xie Jiong Zhang ChangSheng Zhang Zhao-Wei Xu Zi-Qing Chen Lei Wang Wei-Sha Kong Kuan Zhou Ming-Liang Ma Hai-Nan Zhang Shu-Juan Guo Jun-Biao Xue Jing-Li Hou Zhe-Yi Liu Wen-Xue Niu Fang-Jun Wang Tao Wang Wei Li Rui-Na Wang Yong-Jun Dang Daniel MCzajkowsky jianfeng pei Jia-Jia Dong Sheng-Ce Tao 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第8期1869-1887,共19页
Protein-biomolecule interactions play pivotal roles in almost all biological processes.For a biomolecule of interest,the identification of the interacting protein(s)is essential.For this need,although many assays are ... Protein-biomolecule interactions play pivotal roles in almost all biological processes.For a biomolecule of interest,the identification of the interacting protein(s)is essential.For this need,although many assays are available,highly robust and reliable methods are always desired.By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin(SA)-biotin system,we developed the Specific Pupylation as IDEntity Reporter(SPIDER)method for identifying protein-biomolecule interactions.Using SPIDER,we validated the interactions between the known binding proteins of protein,DNA,RNA,and small molecule.We successfully applied SPIDER to construct the global protein interactome for m^(6)A and m RNA,identified a variety of uncharacterized m^(6)A binding proteins,and validated SRSF7 as a potential m^(6)A reader.We globally identified the binding proteins for lenalidomide and Cob B.Moreover,we identified SARS-CoV-2-specific receptors on the cell membrane.Overall,SPIDER is powerful and highly accessible for the study of proteinbiomolecule interactions. 展开更多
关键词 proximity labeling protein-biomolecule interaction proteomics pupylation
原文传递
In silico protein function prediction:the rise of machine learning-based approaches
2
作者 Jiaxiao Chen Zhonghui Gu +1 位作者 Luhua Lai jianfeng pei 《Medical Review》 2023年第6期487-510,共24页
Proteins function as integral actors in essential life processes,rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investig... Proteins function as integral actors in essential life processes,rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation.Within the context of protein research,an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings.Due to the exorbitant costs and limited throughput inherent in experimental investigations,computational models offer a promising alternative to accelerate protein function annotation.In recent years,protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks.This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction.In this review,we elucidate the historical evolution and research paradigms of computational methods for predicting protein function.Subsequently,we summarize the progress in protein and molecule representation as well as feature extraction techniques.Furthermore,we assess the performance of machine learning-based algorithms across various objectives in protein function prediction,thereby offering a comprehensive perspective on the progress within this field. 展开更多
关键词 protein function prediction pre-training models protein interaction prediction protein function annotation biological knowledge graph
原文传递
Analysis of protein features and machine learning algorithms for prediction of druggable proteins
3
作者 Tanlin Sun Luhua La jianfeng pei 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2018年第4期334-343,共10页
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部