The development of high-efficiency electrocatalysts for overall water splitting under large current density is significant and challenging.Herein,a high-performing Fe-doped MoNi alloy catalyst(M-H-MoNiFe-50)abundant w...The development of high-efficiency electrocatalysts for overall water splitting under large current density is significant and challenging.Herein,a high-performing Fe-doped MoNi alloy catalyst(M-H-MoNiFe-50)abundant with flower-like nanorods assemblies has been prepared by high-pressure microwave reaction and hydrogen reduction.Firstly,Fe doped NiMoO_(4) precursor(M-MoNiFe-50)was synthesized by microwave fast heating,ensuring the robustness of nanorods,which owns larger area and improved catalytic activity than that by conventional hydrothermal method.Secondly,M-MoNiFe-50 was reduced in H_(2)/Ar to fabricate Fe-incorporated MoNi_(4) alloys(M-H-MoNiFe-50),greatly enhancing the conductivity and facilitating hydrogen/oxygen spillover.The final M-H-MoNiFe-50 exhibits remarkable activity for alkaline/acidic hydrogen evolution reaction and oxygen evolution reaction with low overpotential of 208(alkaline),254(acid)and 347 mV at 1,000 mA·cm^(−2).Moreover,an alkaline water electrolyzer is established using M-H-MoNiFe-50 as anode and cathode,generating a current density of 100 mA·cm^(−2) at 1.58 V with encouraging durability of 50 h at 1,000 mA·cm^(−2).The extraordinary water splitting performance can be chalked up to the large surface area,favorable charge transfer,modified electron distribution,intrinsic robustness as well as an efficient gas spillover of M-H-MoNiFe-50.The final electrocatalyst has great prospects for practical application and confirms the significance of Fe doping,microwave method and spillover effect for catalytic performance improvement.展开更多
The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of suc...The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of such failures.However,the capacity and position of the synchronous generator(SG)involved in regulation limit the power regu-lation speed(PRS)of REG to the overload line which is the main cause of cascading failures,while the PRS of SG is related to the position and shedding power.REG and SGs have difficulty in achieving effective cooperation under constraints of system power balance.Particularly,the dynamic variation of line flow during power regulation causes new problems for the accurate evaluation of line thermal safety under overload.Therefore,a new strategy for quan-titatively coordinating shedding power and power regulation to block cascading failures in the dynamic security domain is proposed in this paper.The control capability and dynamic security domain of the overload line are mod-eled,and the coordination control method based on power regulation is then proposed to minimize shedding power.The algorithm for the optimal control scheme considers the constraints of load capacity,power source capacity and bus PRS.The correctness of the proposed method is verified using case studies.展开更多
Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homolo- gous PSU a...Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homolo- gous PSU assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligo- meric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.展开更多
In complicated product industry such as aircraft manufacturing, an assembly model contains abundant engineering information for use in design, manufacture, and maintenance. Assembly retrieval can be used to find relev...In complicated product industry such as aircraft manufacturing, an assembly model contains abundant engineering information for use in design, manufacture, and maintenance. Assembly retrieval can be used to find relevant models for knowledge reuse. However, an assembly with rotatable joints may have many poses, which brings difficulty to assembly retrieval, since there is no pose principle for assembly design. Therefore, focused on rotatable joints in assembly, a skeleton-based descriptor for pose-free assembly retrieval is proposed. The centroid points of part surfaces and contact faces in an assembly are extracted to construct a spatial-contact skeleton. The skeletonbased distance is proposed to measure the distance between two surface points, which is invariant to the rotatable joints. The distribution of skeleton distances between two parts is used to describe the pair. Considering a part paired with all other parts in the assembly, the set of part pairs is used to represent a part, and the modified Hausdorff distance is used to measure the dissimilarity between parts for assembly retrieval. Experiments are conducted to compare the accuracy of the proposed descriptor to holistic and structureless descriptors. The proposed method is shown to retrieve assemblies with similar parts and structures regardless of their rotatable joints.展开更多
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria,mitochondria,and chloroplasts.Like most cyanobacteria,the ...FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria,mitochondria,and chloroplasts.Like most cyanobacteria,the model species Synechocystis sp.PCC 6803 contains four FtsH homologs,FtsH1–FtsH4.FtsH1–FtsH3 form two hetero-oligomeric complexes,FtsH1/3 and FtsH2/3,which play a pivotal role in acclimation to nutrient deficiency and photosystem Ⅱ quality control,respectively.FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex,and together with Arabidopsis thaliana AtFtsH7/9 orthologs,it has been assigned to another phylogenetic group of unknown function.Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex.Instead,we demonstrate that FtsH4 is involved in the biogenesis of photosystem Ⅱ by dual regulation of high light-inducible proteins(Hlips).FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed.We provide experimental support for Hlips as proteolytic substrates of FtsH4.Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques.Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system.Based on the identification of proteins that co-purified with the tagged FtsH4,we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.展开更多
基金supported by the National Natural Science Foundation of China(No.52174283)Qingdao Science and Technology Benefiting People Special Project(No.20-3-4-8-nsh)+1 种基金the Fundamental Research Funds for the Central Universities(No.20CX02212A)the Development Fund of State Key Laboratory of Heavy Oil Processing and the Postgraduate Innovation Project of China University of Petroleum(No.YCX2020046).
文摘The development of high-efficiency electrocatalysts for overall water splitting under large current density is significant and challenging.Herein,a high-performing Fe-doped MoNi alloy catalyst(M-H-MoNiFe-50)abundant with flower-like nanorods assemblies has been prepared by high-pressure microwave reaction and hydrogen reduction.Firstly,Fe doped NiMoO_(4) precursor(M-MoNiFe-50)was synthesized by microwave fast heating,ensuring the robustness of nanorods,which owns larger area and improved catalytic activity than that by conventional hydrothermal method.Secondly,M-MoNiFe-50 was reduced in H_(2)/Ar to fabricate Fe-incorporated MoNi_(4) alloys(M-H-MoNiFe-50),greatly enhancing the conductivity and facilitating hydrogen/oxygen spillover.The final M-H-MoNiFe-50 exhibits remarkable activity for alkaline/acidic hydrogen evolution reaction and oxygen evolution reaction with low overpotential of 208(alkaline),254(acid)and 347 mV at 1,000 mA·cm^(−2).Moreover,an alkaline water electrolyzer is established using M-H-MoNiFe-50 as anode and cathode,generating a current density of 100 mA·cm^(−2) at 1.58 V with encouraging durability of 50 h at 1,000 mA·cm^(−2).The extraordinary water splitting performance can be chalked up to the large surface area,favorable charge transfer,modified electron distribution,intrinsic robustness as well as an efficient gas spillover of M-H-MoNiFe-50.The final electrocatalyst has great prospects for practical application and confirms the significance of Fe doping,microwave method and spillover effect for catalytic performance improvement.
基金supported in part by the National Natural Science Foundation of China under Grant 51877018in part by the Natural Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0321in part by the Graduate Research and Innovation Foundation of Chongqing,China under Grant CYB22019.
文摘The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of such failures.However,the capacity and position of the synchronous generator(SG)involved in regulation limit the power regu-lation speed(PRS)of REG to the overload line which is the main cause of cascading failures,while the PRS of SG is related to the position and shedding power.REG and SGs have difficulty in achieving effective cooperation under constraints of system power balance.Particularly,the dynamic variation of line flow during power regulation causes new problems for the accurate evaluation of line thermal safety under overload.Therefore,a new strategy for quan-titatively coordinating shedding power and power regulation to block cascading failures in the dynamic security domain is proposed in this paper.The control capability and dynamic security domain of the overload line are mod-eled,and the coordination control method based on power regulation is then proposed to minimize shedding power.The algorithm for the optimal control scheme considers the constraints of load capacity,power source capacity and bus PRS.The correctness of the proposed method is verified using case studies.
文摘Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homolo- gous PSU assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligo- meric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.
基金co-supported by the National Natural Science Foundation of China(No.51475371)the Key R&D project in Shaanxi Province(No.2019ZDLGY0201)。
文摘In complicated product industry such as aircraft manufacturing, an assembly model contains abundant engineering information for use in design, manufacture, and maintenance. Assembly retrieval can be used to find relevant models for knowledge reuse. However, an assembly with rotatable joints may have many poses, which brings difficulty to assembly retrieval, since there is no pose principle for assembly design. Therefore, focused on rotatable joints in assembly, a skeleton-based descriptor for pose-free assembly retrieval is proposed. The centroid points of part surfaces and contact faces in an assembly are extracted to construct a spatial-contact skeleton. The skeletonbased distance is proposed to measure the distance between two surface points, which is invariant to the rotatable joints. The distribution of skeleton distances between two parts is used to describe the pair. Considering a part paired with all other parts in the assembly, the set of part pairs is used to represent a part, and the modified Hausdorff distance is used to measure the dissimilarity between parts for assembly retrieval. Experiments are conducted to compare the accuracy of the proposed descriptor to holistic and structureless descriptors. The proposed method is shown to retrieve assemblies with similar parts and structures regardless of their rotatable joints.
基金supported by the Grant Agency of the Czech Republic(19-08900Y to V.K.,22-03092S to A.W.)support from the Biotechnology and Biological Sciences Research Council(UK)(BB/M012166/1)+1 种基金financial support from the European Research Council,Synergy award 854126.C.N.Hsupported by award BB/M000265/1 fromthe Biotechnology and Biological Sciences Research Council(BBSRC UK).
文摘FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria,mitochondria,and chloroplasts.Like most cyanobacteria,the model species Synechocystis sp.PCC 6803 contains four FtsH homologs,FtsH1–FtsH4.FtsH1–FtsH3 form two hetero-oligomeric complexes,FtsH1/3 and FtsH2/3,which play a pivotal role in acclimation to nutrient deficiency and photosystem Ⅱ quality control,respectively.FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex,and together with Arabidopsis thaliana AtFtsH7/9 orthologs,it has been assigned to another phylogenetic group of unknown function.Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex.Instead,we demonstrate that FtsH4 is involved in the biogenesis of photosystem Ⅱ by dual regulation of high light-inducible proteins(Hlips).FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed.We provide experimental support for Hlips as proteolytic substrates of FtsH4.Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques.Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system.Based on the identification of proteins that co-purified with the tagged FtsH4,we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.