期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
1
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu jianfu shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Enhancing the elastoplastic damage constitutive model for clayey rocks: Incorporating anisotropy, saturation, time-dependent, and debonding effects
2
作者 Jueliang Chen Siyu Liu +2 位作者 Wanqing Shen jianfu shao Minh-Ngoc Vu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2291-2312,共22页
This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The pr... This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model. 展开更多
关键词 Clayey rocks MICROMECHANICS ANISOTROPY Plasticity VISCOPLASTICITY Debonding damage SATURATION
下载PDF
Micromechanics of rock damage: Advances in the quasi-brittle field 被引量:4
3
作者 Qizhi Zhu jianfu shao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期29-40,共12页
Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle fiel... Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks. 展开更多
关键词 MICROMECHANICS Damage-friction coupling Unilateral effects Induced anisotropy Failure criterion Brittle rocks
下载PDF
A method to experimentally investigate injection-induced activation of fractures
4
作者 Changdong Ding Yang Zhang +4 位作者 Qi Teng Dawei Hu Hui Zhou jianfu shao Chuanqing Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1326-1332,共7页
Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present pape... Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs,which can produce complex fracture networks due to the activation of fractures during hydraulic stimulation.The present paper is devoted to developing a method to investigate the activation characteristics of fracture under injection-shearing coupled condition at laboratory scale.The fluid is injected into the single-fractured granite until the fracture is activated based on the triaxial direct shear tests.The results show that injection process can significantly influence the shear stress distribution field,resulting in release of shear stress and relative slip between the opposite sides of the fractured surface.The injectioninduced activation of fracture is strongly dependent on the stress states.When the normal stress increases,the injection-induced activation pressure increases,and the comparatively high normal stress can restrain the fracture activation.The fracture deformation mechanisms during fluid injection are also discussed preliminarily with the experimental data.The sensitivity of shear stress to fluid injection increases with increase of shear stress level,while it decreases under high normal stress.The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulation. 展开更多
关键词 Natural fracture Fluid injection Induced activation Triaxial direct shear test Hydraulic fracturing
下载PDF
A THERMO-PLASTIC/VISCOPLASTIC DAMAGE MODEL FOR GEOMATERIALS 被引量:6
5
作者 Hui Zhou Dawei Hu +1 位作者 Fan Zhang jianfu shao 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第3期195-208,共14页
A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneo... A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneous plastic strain and creep plastic strain. To take temperature effect into acconnt, a temperature variable was introduced into the instantaneous and creep plastic behavior descriptions and damage characterization, and a linear thermal expansion law was used in constitutive equation formulation. According to the mechanical behavior of rock salt, a specific model was proposed based on the previous model and applied to Avery rock salt, in which the numerical results obtained from our model had a good agreement with the data from experiments. 展开更多
关键词 thermo-plastic/viscoplastic damage coupled mechanical model geomaterial ROCKSALT
原文传递
A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED 被引量:4
6
作者 Dawei Hu Hui Zhou +3 位作者 Qizhi Hu jianfu shao Xiating Feng Haibin Xiao 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第4期361-376,共16页
A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid m... A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial. 展开更多
关键词 hydro-mechanical-chemical coupling mechanical damage chemical damage SANDSTONE chemical kinetics
原文传递
A coupled elastoplastic and visco-plastic damage model for hard clay and its application for the underground gallery excavation
7
作者 Hanbing Bian Xiaotian Zhang jianfu shao 《Underground Space》 SCIE EI 2017年第1期60-72,共13页
The numerical modelling of the excavation of an underground gallery in hard clay has been discussed in current article.A constitutive model is proposed to describe poromechanical behaviour of the hard clay.The main fe... The numerical modelling of the excavation of an underground gallery in hard clay has been discussed in current article.A constitutive model is proposed to describe poromechanical behaviour of the hard clay.The main features of the hard clay observed in laboratory and in-situ experimental investigation have been taken into account in the proposed constitutive model,in particular the plastic deformation,the visco-plastic deformation,the damage,etc.The influence of the initial in-situ stress and the pore pressure has been taken into consideration.The numerical modelling of the underground excavation has been implemented by using a fully coupled hydro-mechanical finite element calculation code.The performance of the model is examined by comparing numerical simulations with in situ measurements.The proposed model and the calculation procedure for the modelling of the excavation of an underground gallery have the capacity to reproduce well the excavation damaged/distributed zone and other main features and phenomena observed during the excavation process.However,the in-situ observed convergence could not be reproduced correctly.More effort on the discontinuous problem should be made for the reproduce the observed convergence. 展开更多
关键词 Full coupled hydro-mechanical processes Elasto-plastic-damage model Visco-plastic model Underground excavation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部