随着电力市场和特高压的快速发展,电网可用空间及市场开展的边界难以通过人工经验判断,有必要研究省间现货交易的可用输电容量计算方法。针对该问题,结合电力现货市场特点、跨区域输电定价机制和电气距离,构建了考虑电气特性的省间交易...随着电力市场和特高压的快速发展,电网可用空间及市场开展的边界难以通过人工经验判断,有必要研究省间现货交易的可用输电容量计算方法。针对该问题,结合电力现货市场特点、跨区域输电定价机制和电气距离,构建了考虑电气特性的省间交易网络模型,提出了基于遗传算法的省间交易路径寻优优化方法;与传统高低匹配出清方式下形成的交易路径进行对比,分析验证其可行性,寻得最优交易路径;将可用输电能力(available transfer capability, ATC)计算方法与交易路径相结合,以最优交易路径上的成交电量进行最优潮流计算,得到省间现货市场下基于交易路径的可用输电容量。展开更多
China’s COMPASS satellite navigation system consists of five or more geostationary (GEO) satellites.The roles of GEO satellites are to improve the regional user’s positioning accuracy and provide the continuous Radi...China’s COMPASS satellite navigation system consists of five or more geostationary (GEO) satellites.The roles of GEO satellites are to improve the regional user’s positioning accuracy and provide the continuous Radio Determination Satellite Service.The motion of GEO satellites relative to a ground tracking station is almost fixed,and regular orbit maneuvers are necessary to maintain the satellites’ allocated positions above the equator.These features present difficulties in precise orbit determination (POD).C-band ranging via onboard transponders and the L-band pseudo-ranging technique have been used in the COMPASS system.This paper introduces VLBI tracking,which has been successfully employed in the Chinese lunar exploration programs Chang’E-1 and Chang’E-2,to the POD of GEO satellites.In contrast to ranging,which measures distances between a GEO satellite and an observer,VLBI is an angular measurement technique that constrains the satellite’s position errors perpendicular to the satellite-to-observer direction.As a demonstration,the Chinese VLBI Network organized a tracking and orbit-determination experiment for a GEO navigation satellite lasting 24 h.This paper uses the VLBI delay and delay-rate data,in combination with C-band ranging data,to determine the GEO satellite’s orbit.The accuracies of the VLBI delay and delay rate data are about 3.6 ns and 0.4 ps/s,respectively.Data analysis shows that the VLBI data are able to calibrate systematic errors of the C-band ranging data,and the combination of the two observations improves orbit prediction accuracy with short-arc data,which is important for orbital recovery after maneuvers of GEO satellites.With the implementation of VLBI2010,it is possible for VLBI to be applied in the COMPASS satellite navigation system.展开更多
The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang...The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided evaluations of different lunar gravity models through POD. It is found that for the 100 km x 100 km lunar orbit, with a degree and order expansion up to 165, JPL's gravity model LP165P did not show noticeable improvement over Japan's SGM series models (100x100), but for the 15 kmxl00 km lunar orbit, a higher de- gree-order model can significantly improve the orbit accuracy.展开更多
A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise kno...A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise knowledge about the motion of the moon as provided by planetary ephemeris,to estimate the lander's position on the lunar surface with high accuracy.Accuracy analyses are carried out with simulation data using the software developed at Shanghai Astronomical Observatory in this study to show that measurement errors will dominate the position accuracy.Application of lunar digital elevation model(DEM) as constraints in the lander positioning is also analyzed.Simulations show that combing range/doppler and VLBI data,single epoch positioning accuracy is at several hundred meters level,but with ten minutes data accumulation positioning accuracy is able to be achieved with several meters.Analysis also shows that the information given by DEM can provide constraints in positioning,when DEM data reduce a 3-dimensional positioning problem to 2-dimensional.Considering the Sinus Iridum,CE-3 lander's planned landing area,has been observed with dedicated details during the CE-1 and CE-2 missions,and its regional DEM model accuracy may be higher than global models,which will certainly support CE-3's lander positioning.展开更多
文摘随着电力市场和特高压的快速发展,电网可用空间及市场开展的边界难以通过人工经验判断,有必要研究省间现货交易的可用输电容量计算方法。针对该问题,结合电力现货市场特点、跨区域输电定价机制和电气距离,构建了考虑电气特性的省间交易网络模型,提出了基于遗传算法的省间交易路径寻优优化方法;与传统高低匹配出清方式下形成的交易路径进行对比,分析验证其可行性,寻得最优交易路径;将可用输电能力(available transfer capability, ATC)计算方法与交易路径相结合,以最优交易路径上的成交电量进行最优潮流计算,得到省间现货市场下基于交易路径的可用输电容量。
基金supported by the National Natural Science Foundation of China (10703011,11073047,11033004)the National High-Tech Research and Development Program of China (2008AA12A209,2008AA12A210)the Science and Technology Commission of Shanghai (06DZ22101)
文摘China’s COMPASS satellite navigation system consists of five or more geostationary (GEO) satellites.The roles of GEO satellites are to improve the regional user’s positioning accuracy and provide the continuous Radio Determination Satellite Service.The motion of GEO satellites relative to a ground tracking station is almost fixed,and regular orbit maneuvers are necessary to maintain the satellites’ allocated positions above the equator.These features present difficulties in precise orbit determination (POD).C-band ranging via onboard transponders and the L-band pseudo-ranging technique have been used in the COMPASS system.This paper introduces VLBI tracking,which has been successfully employed in the Chinese lunar exploration programs Chang’E-1 and Chang’E-2,to the POD of GEO satellites.In contrast to ranging,which measures distances between a GEO satellite and an observer,VLBI is an angular measurement technique that constrains the satellite’s position errors perpendicular to the satellite-to-observer direction.As a demonstration,the Chinese VLBI Network organized a tracking and orbit-determination experiment for a GEO navigation satellite lasting 24 h.This paper uses the VLBI delay and delay-rate data,in combination with C-band ranging data,to determine the GEO satellite’s orbit.The accuracies of the VLBI delay and delay rate data are about 3.6 ns and 0.4 ps/s,respectively.Data analysis shows that the VLBI data are able to calibrate systematic errors of the C-band ranging data,and the combination of the two observations improves orbit prediction accuracy with short-arc data,which is important for orbital recovery after maneuvers of GEO satellites.With the implementation of VLBI2010,it is possible for VLBI to be applied in the COMPASS satellite navigation system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10703011 and11073047)the Science and Technology Commission of Shanghai (GrantNo. 06DZ22101)the National High Technology Research and Development Program of China (Grant No. 2010AA122202)
文摘The Unified S-Band (USB) ranging/Doppler system and the Very Long Baseline Interferometry (VLBI) system as the ground tracking system jointly supported the lunar orbit capture of both Chang'E-2 (CE-2) and Chang'E-1 (CE-1) missions. The tracking system is also responsible for providing precise orbits for scientific data processing. New VLBI equipment and data processing strategies have been proposed based on CE-1 experiences and implemented for CE-2. In this work the role VLBI tracking data played was reassessed through precision orbit determination (POD) experiments for CE-2. Significant improve- ment in terms of both VLBI delay and delay rate data accuracy was achieved with the noise level of X-band band-width syn- thesis delay data reaching 0.2-0.3 ns. Short-arc orbit determination experiments showed that the combination of only 15 min's range and VLBI data was able to improve the accuracy of 3 h's orbit using range data only by a 1-1.5 order of magnitude, confirming a similar conclusion for CE-1. Moreover, because of the accuracy improvement, VLBI data was able to contribute to CE-2's long-arc POD especially in the along-track and orbital normal directions. Orbital accuracy was assessed through the orbital overlapping analysis (2 h arc overlapping for 18 h POD arc). Compared with about 100 m position error of CE-l's 200 kin x 200 km lunar orbit, for CE-2's 100 km x 100 km lunar orbit, the position errors were better than 31 and 6 m in the radial direction, and for CE-2's 15 km^100 km orbit, the position errors were better than 45 and 12 m in the radial direction. In addi- tion, in trying to analyze the Delta Differential One-Way Ranging (ADOR) experiments data we concluded that the accuracy of ADOR delay was dramatically improved with the noise level better than 0.1 ns and systematic errors better calibrated, and the Short-arc POD tests with ADOR data showed excellent results. Although unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided evaluations of different lunar gravity models through POD. It is found that for the 100 km x 100 km lunar orbit, with a degree and order expansion up to 165, JPL's gravity model LP165P did not show noticeable improvement over Japan's SGM series models (100x100), but for the 15 kmxl00 km lunar orbit, a higher de- gree-order model can significantly improve the orbit accuracy.
基金supported by the National Natural Science Foundation of China(11073047,10703011)Science and Technology Commission of Shanghai(12DZ2273300)
文摘A kinematic statistical method is proposed to determine the position for Chang'E-3(CE-3) lunar lander.This method uses both ranging and VLBI measurements to the lander for a continuous arc,combing with precise knowledge about the motion of the moon as provided by planetary ephemeris,to estimate the lander's position on the lunar surface with high accuracy.Accuracy analyses are carried out with simulation data using the software developed at Shanghai Astronomical Observatory in this study to show that measurement errors will dominate the position accuracy.Application of lunar digital elevation model(DEM) as constraints in the lander positioning is also analyzed.Simulations show that combing range/doppler and VLBI data,single epoch positioning accuracy is at several hundred meters level,but with ten minutes data accumulation positioning accuracy is able to be achieved with several meters.Analysis also shows that the information given by DEM can provide constraints in positioning,when DEM data reduce a 3-dimensional positioning problem to 2-dimensional.Considering the Sinus Iridum,CE-3 lander's planned landing area,has been observed with dedicated details during the CE-1 and CE-2 missions,and its regional DEM model accuracy may be higher than global models,which will certainly support CE-3's lander positioning.