The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld therm...The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel.展开更多
文摘The effect of different peak temperature(Tp) and cooling time (t8/5) on microstructure, hardness, impact toughness and fracture morphology in the heat-affected zone (HAZ) of HQ130 steel was studied by using weld thermo-simulation test. Experimental results indicate that the impact toughness and hardness decrease with the decrease of Tpor increase of t8/5 under the condition of a single thermal cycle. There is a brittle zone in the vicinity of Tp= 800℃, where the impact toughness is considerably low. There is a softened zone in the vicinity of Tp=700℃, where the hardness decreases but the toughness increases. In the practical application of multi-layer and multipass welding, the welding heat input should be strictly limited (t8/5≤20s) so as to reduce the softness and brittleness in the HAZ of-HQ130 steel.