The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with g...The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with general cross-section characters were divided into finite segment models under the assumption of small strain. In order to decrease the degrees of freedom of the system and increase the efficiency of numerical calculation. the mode transformation has been introduced. A typical example is presented. and the foregoing method has been perfectly verified.展开更多
Abstract This paper describes a longitudinal parameter identification procedure for a small unmanned aerial vehicle (UAV) through modified particle swam optimization (PSO). The proce- dure is demonstrated using a ...Abstract This paper describes a longitudinal parameter identification procedure for a small unmanned aerial vehicle (UAV) through modified particle swam optimization (PSO). The proce- dure is demonstrated using a small UAV equipped with only an micro-electro-mechanical systems (MEMS) inertial mea,mring element and a global positioning system (GPS) receiver to provide test information. A small UAV longitudinal parameter mathematical model is derived and the modified method is proposed based on PSO with selective particle regeneration (SRPSO). Once modified PSO is applied to the mathematical model, the simulation results show that the mathematical model is correct, and aerodynamic parameters and coefficients of the propeller can be identified accurately. Results are compared with those of PSO and SRPSO and the comparison shows that the proposed method is more robust and faster than the other methods for the longitudinal parameter identification of the small UAV. Some parameter identification results are affected slightly by noise, but the identification results are very good overall. Eventually, experimental validation is employed to test the proposed method, which demonstrates the usefulness of this method.展开更多
文摘The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with general cross-section characters were divided into finite segment models under the assumption of small strain. In order to decrease the degrees of freedom of the system and increase the efficiency of numerical calculation. the mode transformation has been introduced. A typical example is presented. and the foregoing method has been perfectly verified.
基金supported by the National Defense Basic Research Program of China(No.B22201320xx)
文摘Abstract This paper describes a longitudinal parameter identification procedure for a small unmanned aerial vehicle (UAV) through modified particle swam optimization (PSO). The proce- dure is demonstrated using a small UAV equipped with only an micro-electro-mechanical systems (MEMS) inertial mea,mring element and a global positioning system (GPS) receiver to provide test information. A small UAV longitudinal parameter mathematical model is derived and the modified method is proposed based on PSO with selective particle regeneration (SRPSO). Once modified PSO is applied to the mathematical model, the simulation results show that the mathematical model is correct, and aerodynamic parameters and coefficients of the propeller can be identified accurately. Results are compared with those of PSO and SRPSO and the comparison shows that the proposed method is more robust and faster than the other methods for the longitudinal parameter identification of the small UAV. Some parameter identification results are affected slightly by noise, but the identification results are very good overall. Eventually, experimental validation is employed to test the proposed method, which demonstrates the usefulness of this method.