期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
1
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao jiang-feng guo guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
下载PDF
Low-field NMR inversion based on low-rank and sparsity restraint of relaxation spectra 被引量:2
2
作者 Si-Hui Luo Li-Zhi Xiao +5 位作者 Yan Jin jiang-feng guo Xiao-Bo Qu Zhang-Ren Tu Gang Luo Can Liang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2741-2756,共16页
In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible... In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible for one-and two-dimensional low-field and low signal to noise ratio NMR data.In this method,the low-rank and sparsity restraints are introduced into the objective function instead of the smoothing term.The low-rank features in relaxation spectra are extracted to ensure the local characteristics and morphology of spectra.The sparsity and residual term are contributed to the resolution and precision of spectra,with the elimination of the redundant relaxation components.Optimization process of the objective function is designed with alternating direction method of multiples,in which the objective function is decomposed into three subproblems to be independently solved.The optimum solution can be obtained by alternating iteration and updating process.At first,numerical simulations are conducted on synthetic echo data with different signal-to-noise ratios,to optimize the desirable regularization parameters and verify the feasibility and effectiveness of proposed method.Then,NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,which validates the robustness and reliability of the proposed method.The results from simulations and experiments have demonstrated that the suggested method has unique advantages for improving the resolution of relaxation spectra and enhancing the ability of fluid quantitative identification. 展开更多
关键词 Low-field NMR Inversion method Low-rank and sparsity restraint Relaxation spectra Data processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部