In practical applications,relative humidity in the air is a key factor affecting the photocatalytic removal of NO,which is often overlooked in previous studies.Here,we developed a direct Z-scheme UiO-66-NH_(2)/Bi_(2)M...In practical applications,relative humidity in the air is a key factor affecting the photocatalytic removal of NO,which is often overlooked in previous studies.Here,we developed a direct Z-scheme UiO-66-NH_(2)/Bi_(2)MoO_(6)heterojunction with a nanoflower-like structure to systematically investigate the effect of relative humidity on photocatalytic removal of NO.The optimized heterojunction for the removal efficiency of NO was 71.6%at1.07 mg·m^(-3)NO concentration(relative humidity=10%),and the generation of NO_(2) was only 1.1%.Interestingly,with the increase in relative humidity,it showed a higher inhibition effect on NO_(2),while the removal of NO decreased slightly(8%),which might be attributed to the affinity effect of NO_(2) with water molecules and the competitive adsorption of H_(2)O and NO on the surface of the heterojunction photocatalysts.Furthermore,the reaction pathways of NO removal at the developed heterojunctions were revealed by in situ DRIFTS analysis.This work provides a novel vision for the development of direct Z-scheme heterojunction photocatalysts to effectively remove NO and inhibit the formation of toxic intermediate NO_(2) under different humidities.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52161145409 and 21976116)SAFEA of China("Belt and Road"Innovative Exchange Foreign Expert Project,No.DL2023041004L)Researchers Supporting Project number(No.RSPD2024R691),King Saud University,Riyadh,Saudi Arabia。
文摘In practical applications,relative humidity in the air is a key factor affecting the photocatalytic removal of NO,which is often overlooked in previous studies.Here,we developed a direct Z-scheme UiO-66-NH_(2)/Bi_(2)MoO_(6)heterojunction with a nanoflower-like structure to systematically investigate the effect of relative humidity on photocatalytic removal of NO.The optimized heterojunction for the removal efficiency of NO was 71.6%at1.07 mg·m^(-3)NO concentration(relative humidity=10%),and the generation of NO_(2) was only 1.1%.Interestingly,with the increase in relative humidity,it showed a higher inhibition effect on NO_(2),while the removal of NO decreased slightly(8%),which might be attributed to the affinity effect of NO_(2) with water molecules and the competitive adsorption of H_(2)O and NO on the surface of the heterojunction photocatalysts.Furthermore,the reaction pathways of NO removal at the developed heterojunctions were revealed by in situ DRIFTS analysis.This work provides a novel vision for the development of direct Z-scheme heterojunction photocatalysts to effectively remove NO and inhibit the formation of toxic intermediate NO_(2) under different humidities.