A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and...A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and time, as well as the welding joint geometry on the burst phenomenon were investigated. The results show that the burst phenomenon occurs in the liquid filler metal under the effects of high current density, heat, and interaction force. The burst phenomenon is eliminated when the oxide film on the edge of the cross-section of the two parent metals is removed with more than or equal to 6 s ultrasonic time. A model of formation and elimination for burst was proposed, through which the blasting phenomenon can be controlled by changing the ultrasonic time and the geometrical shape of the welded joint.展开更多
文摘A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and time, as well as the welding joint geometry on the burst phenomenon were investigated. The results show that the burst phenomenon occurs in the liquid filler metal under the effects of high current density, heat, and interaction force. The burst phenomenon is eliminated when the oxide film on the edge of the cross-section of the two parent metals is removed with more than or equal to 6 s ultrasonic time. A model of formation and elimination for burst was proposed, through which the blasting phenomenon can be controlled by changing the ultrasonic time and the geometrical shape of the welded joint.