Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still fac...Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.展开更多
This paper investigates the anti-jamming communication scenario where an intelligent reflecting surface(IRS)is mounted on the unmanned aerial vehicle(UAV)to resist the malicious jamming attacks.Different from existing...This paper investigates the anti-jamming communication scenario where an intelligent reflecting surface(IRS)is mounted on the unmanned aerial vehicle(UAV)to resist the malicious jamming attacks.Different from existing works,we consider the dynamic deployment of IRS-UAV in the environment of the mobile user and unknown jammer.Therefore,a joint trajectory and passive beamforming optimization approach is proposed in the IRS-UAV enhanced networks.In detail,the optimization problem is firstly formulated into a Markov decision process(MDP).Then,a dueling double deep Q networks multi-step learning algorithm is proposed to tackle the complex and coupling decision-making problem.Finally,simulation results show that the proposed scheme can significantly improve the anti-jamming communication performance of the mobile user.展开更多
In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destinati...In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.展开更多
基金the National Natural Science Foundation of China(No.62171462,No.62231027,No.U20B2038,No.61931011,No.62001514 and No.62271501).
文摘Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.
基金This work was supported in part by the National Natural Science Foundation of China(No.61971474,No.61771488)in part by the Beijing Nova Program under Grant Z201100006820121in part by China Postdoctoral Science Foundation Funded Project under Grant 2019T120071.
文摘This paper investigates the anti-jamming communication scenario where an intelligent reflecting surface(IRS)is mounted on the unmanned aerial vehicle(UAV)to resist the malicious jamming attacks.Different from existing works,we consider the dynamic deployment of IRS-UAV in the environment of the mobile user and unknown jammer.Therefore,a joint trajectory and passive beamforming optimization approach is proposed in the IRS-UAV enhanced networks.In detail,the optimization problem is firstly formulated into a Markov decision process(MDP).Then,a dueling double deep Q networks multi-step learning algorithm is proposed to tackle the complex and coupling decision-making problem.Finally,simulation results show that the proposed scheme can significantly improve the anti-jamming communication performance of the mobile user.
基金co-supported by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Natural Science Foundation of China(Nos.61871398 and 61931011)the National Key R&D Program of China(No.2018YFB1801103)。
文摘In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.