Interest in the development of grid-level energy storage systems has increased over the years.As one of the most popular energy storage technologies currently available,batteries offer a number of high-value opportuni...Interest in the development of grid-level energy storage systems has increased over the years.As one of the most popular energy storage technologies currently available,batteries offer a number of high-value opportunities due to their rapid responses,flexible installation,and excellent performances.However,because of the complexity,multifunctionality,and wide deployment of power grids,trade-offs in battery performance exist,especially when considering economics,environmental effects,and safety.Therefore,establishing a comprehensive assessment of battery technologies is an urgent undertaking.In this work,we present an analysis of rough sets to evaluate the integration of battery systems(e.g.,lead-acid batteries,lithium-ion batteries,nickel/metal-hydrogen batteries,zinc-air batteries,and Na-S batteries)into a power grid.Specifically,technological properties,economic significance,environmental effects,and safety of these battery systems are evaluated on the basis of rough set theory.In addition,some perspectives are provided to promote the development of battery technologies for grid-level energy storage.展开更多
文摘Interest in the development of grid-level energy storage systems has increased over the years.As one of the most popular energy storage technologies currently available,batteries offer a number of high-value opportunities due to their rapid responses,flexible installation,and excellent performances.However,because of the complexity,multifunctionality,and wide deployment of power grids,trade-offs in battery performance exist,especially when considering economics,environmental effects,and safety.Therefore,establishing a comprehensive assessment of battery technologies is an urgent undertaking.In this work,we present an analysis of rough sets to evaluate the integration of battery systems(e.g.,lead-acid batteries,lithium-ion batteries,nickel/metal-hydrogen batteries,zinc-air batteries,and Na-S batteries)into a power grid.Specifically,technological properties,economic significance,environmental effects,and safety of these battery systems are evaluated on the basis of rough set theory.In addition,some perspectives are provided to promote the development of battery technologies for grid-level energy storage.