期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ce&F multifunctional modification improves the electrochemical performance of LiCoO_(2)at 4.60 V
1
作者 jiangli feng Chenhui Wang +5 位作者 Hailin Lei Songtao Liu Jing Liu You Han Jinli Zhang Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期324-334,I0010,共12页
Lithium cobalt oxide(LiCoO_(2))is proverbially employed as cathode materials of lithium-ion batteries attributed to the high theoretical capacity,and currently,it is developing towards higher cut-off voltages in the p... Lithium cobalt oxide(LiCoO_(2))is proverbially employed as cathode materials of lithium-ion batteries attributed to the high theoretical capacity,and currently,it is developing towards higher cut-off voltages in the pursuit of higher energy density.However,it suffers from serious structural degradation and surface side reactions,in particular,at the voltage above 4.60 V,leading to rapid decay of the battery life.Taking into account the desirable oxygen buffering property and the fast ion mobility characteristic of cerium oxide fluoride,in this work,we prepared Ce&F co-modified LiCoO_(2)by using the precursors of Ce(NO_(3))_(3)·6H_(2)O and NH_(4)F,and evaluated the electrochemical performance under voltages exceeding 4.60 V.The results indicated that the modified samples have multiphase heterostructure of surface CeO_(2-x)and unique Ce-O-F solid solution phase.At 3.0–4.60 V and 25℃,the preferred sample LCO-0.5Ce-0.3F has a high initial discharge specific capacity of 221.9 mA h g^(-1)at 0.1 C,with the retention of 80.3%and 89.6%after 300 cycles at 1 and 5 C,comparing with the pristine LCO(56.4%and 22.6%).And at 3.0–4.65 V,its retention is 64.0%after 300 cycles at 1 C,versus 8.5%of the pristine LCO.Through structural characterizations and DFT calculations,it suggests that Ce^(4+)&F^(-)co-doping suppresses the H3 to H1/3 irreversible phase transition,stabilizes the lattice structure,and reduces the redox activity of the lattice oxygen by modulating the Co 3d–O 2p energy band,consequently improving the electrochemical performance of LiCoO_(2)at high voltages. 展开更多
关键词 LiCoO_(2) High-voltage electrochemical performance Ce^(4+)&F^(-)co-doping Multiphase heterostructure DFT calculation
下载PDF
Li_(2)TiO_(3) Dopant and Phosphate Coating Improve the Electrochemical Performance of LiCoO2 at 3.0-4.6 V
2
作者 Baozhao Shi jiangli feng +3 位作者 Jing Liu Yanan Zhou Jinli Zhang Wei Li 《Transactions of Tianjin University》 EI CAS 2023年第1期46-61,共16页
A sol-gel tandem with a solid-phase modification procedure was developed to synthesize Li_(2)TiO_(3)-doped LiCoO_(2) together with phosphate coatings(denoted as LCO-Ti/P),which possesses excellent high-voltage perform... A sol-gel tandem with a solid-phase modification procedure was developed to synthesize Li_(2)TiO_(3)-doped LiCoO_(2) together with phosphate coatings(denoted as LCO-Ti/P),which possesses excellent high-voltage performance in the range of 3.0-4.6 V.The characterizations of X-ray diffraction,high-resolution transmission electron microscopy,and X-ray photoelectron spectroscopy illustrated that the modified sample LCO-Ti/P had the dopant of monoclinic Li_(2)TiO_(3) and amorphous Li3PO4 coating layers.LCO-Ti/P has an initial discharge capacity of 211.6 mAh/g at 0.1 C and a retention of 85.7%after 100 cycles at 1 C and 25±1°C between 3.0 and 4.6 V.Nyquist plots reflect that the charge transfer resistance of LCO-Ti/P after 100 cycles at 1 C is much lower than that of the spent LCO,which benefits Li-ion diffusion.Density functional theory calculations disclose the superior lattice-matching property of major crystal planes for Li_(2)TiO_(3) and LiCoO_(2),the lower energy barriers for Li-ion diffusion in Li_(2)TiO_(3),and the suppressed oxygen release performance resulting from phosphate adsorption.This work provides useful guidance on the rational design of the high-voltage performance of modified LiCoO_(2) materials in terms of lattice-matching properties aside from the phosphate coating to reduce the energy barriers of Li-ion diffusion and enhance cycling stability. 展开更多
关键词 LiCoO_(2) High-voltage performance Li_(2)TiO_(3) Lattice matching Li-ion diffusion Density functional theory calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部