Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfull...Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO2^-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21546013, U1510126, 21407064)the Natural Science Foundation of Jiangsu Province (No. BK20131259)+3 种基金the China Postdoctoral Science Foundation (No. 2015 M571684)the Jiangsu Postdoctoral Science Foundation (No. 1501102B)the Innovation Programs Foundation of Jiangsu Province (No. KYLX15_1089)the Open Research Fund of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (No. 12KF09)
文摘Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle Cd Se nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle Cd Se nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of78.824% was achieved by vesicle Cd Se, which exhibited an increase of 31.779% compared to granular Cd Se. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle Cd Se nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle Cd Se nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+and UO2^-are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle Cd Se nano-semiconductor had high efficiency and stability.