期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil 被引量:1
1
作者 Minghui Cao Yan Duan +6 位作者 Minghao li Caiguo Tang Wenjie Kan jiangye li Huilan Zhang Wenling Zhong lifang Wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期698-710,共13页
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif... Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies. 展开更多
关键词 FERTILIZATION manure substitution soil fertility maize yield bacterial community
下载PDF
Stable-isotope probing of bacterial community for dissolved inorganic carbon utilization in Microcystis aeruginosa-dominated eutrophic water 被引量:1
2
作者 Weiguo Zhang jiangye li +3 位作者 Chengcheng Wang Xue Zhou Yan Gao Zhongjun Jia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第5期264-272,共9页
Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indir... Dissolved inorganic carbon(DIC) is an important source of carbon in aquatic ecosystems,especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing(SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria(Microcystis aeruginosa). Our 16 S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H^(13)CO^(3-) into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H^(13)CO^(3-) metabolized by Microcystis as organic matter, e.g. Bacteroidetes(Cytophagales, Sphingobacteriales), and microcystindegrading bacteria Betaproteobacteria(Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater. 展开更多
关键词 Dissolved inorganic carbon Stable isotope PROBING EUTROPHICATION MICROCYSTIS AERUGINOSA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部