A series of novel red-emitting BaLiZn_(3)(BO_(3))_(3):Eu^(3+)phosphors were synthesized through the high temperature solid state reaction method.The phase composition,crystal structure,morphology and photo luminescenc...A series of novel red-emitting BaLiZn_(3)(BO_(3))_(3):Eu^(3+)phosphors were synthesized through the high temperature solid state reaction method.The phase composition,crystal structure,morphology and photo luminescence property of the BaLiZn_(3)(BO_(3))_(3):Eu^(3+)samples were systematically investigated.The phosphor can be efficiently excited by the near ultraviolet light(NUV)of 396 nm and blue light of 466 nm,and give out red light emission at 618 nm corresponding to the electric dipole transition(^(5)D_(0)→^(7)E_(2)).The optimal doping concentration of Eu^(3+)ions in BaLiZn_(3)(BO_(3))_(3)is determined to be about 3 mol%,and the concentration-quenching phenomenon arise from the electric dipole-dipole interaction.The temperature dependent luminescence behavior of BaLiZn_(3)(BO_(3))_(3):0.03 Eu^(3+)phosphor exhibits its good thermal stability,and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV.The decay lifetime of the BaLiZn_(3)(BO_(3))_(3):0.03 Eu^(3+)is measured to be 1.88 ms.These results suggest that the BaLiZn_(3)(BO_(3))_(3):Eu^(3+)phosphors have the potential application as a red component in white light emitting diodes(WLEDs)with NUV or blue chips.展开更多
基金Project supported by the National Key R&D Program of China(2019YFA0709101)National Natural Science Foundation of China(52072364,51902305)the Fund for Creative Research Groups(21221061)。
文摘A series of novel red-emitting BaLiZn_(3)(BO_(3))_(3):Eu^(3+)phosphors were synthesized through the high temperature solid state reaction method.The phase composition,crystal structure,morphology and photo luminescence property of the BaLiZn_(3)(BO_(3))_(3):Eu^(3+)samples were systematically investigated.The phosphor can be efficiently excited by the near ultraviolet light(NUV)of 396 nm and blue light of 466 nm,and give out red light emission at 618 nm corresponding to the electric dipole transition(^(5)D_(0)→^(7)E_(2)).The optimal doping concentration of Eu^(3+)ions in BaLiZn_(3)(BO_(3))_(3)is determined to be about 3 mol%,and the concentration-quenching phenomenon arise from the electric dipole-dipole interaction.The temperature dependent luminescence behavior of BaLiZn_(3)(BO_(3))_(3):0.03 Eu^(3+)phosphor exhibits its good thermal stability,and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV.The decay lifetime of the BaLiZn_(3)(BO_(3))_(3):0.03 Eu^(3+)is measured to be 1.88 ms.These results suggest that the BaLiZn_(3)(BO_(3))_(3):Eu^(3+)phosphors have the potential application as a red component in white light emitting diodes(WLEDs)with NUV or blue chips.