With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,...With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,impedance model,and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges.Hence,a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency.Furthermore,asymmetrical fault characteristics are extracted.As an application,a faulted phase identification(FPI)strategy is proposed based on the fault characteristics.The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.展开更多
基金supported in part by the National Natural Science Foundation of China(52107096)in part by the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)in part by the National Science Foundation for Distinguished Young Scholars of China(52225704).
文摘With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,impedance model,and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges.Hence,a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency.Furthermore,asymmetrical fault characteristics are extracted.As an application,a faulted phase identification(FPI)strategy is proposed based on the fault characteristics.The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.