Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat...This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.展开更多
Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in ...Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in regulating biological activities under physiological and pathological conditions.Kidney-derived exosomes,which vary in origin and function,may either contribute to the pathogenesis of disease or represent a potential therapeutic resource.Membranous nephropathy(MN),an autoimmune kidney disease characterized by glomerular damage,is a predominant cause of nephrotic syndrome.Notably,MN,especially idiopathic membranous nephropathy(IMN),often results in end-stage renal disease(ESRD),affecting approximately 30%of patients and posing a considerable economic challenge to healthcare systems.Despite substantial research,therapeutic options remain ineffective at halting IMN progression,underscoring the urgent need for innovative strategies.Emerging evidence has implicated exosomes in IMN’s pathophysiology;Providing a fresh perspective for the discovery of novel biomarkers and therapeutic strategies.This review aims to scrutinize recent developments in exosome-related mechanisms in IMN and evaluate their potential as promising therapeutic targets and diagnostic biomarkers,with the hope of catalyzing further investigations into the utility of exosomes in MN,particularly IMN,ultimately contributing to improved patient outcomes in these challenging disease settings.展开更多
During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service ...During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations.However,the life of the present LIB is far from meeting such high demand.Therefore,research on the next-generation LIB with ultra-long service life is imminent.Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs.This review systematically summarized the different prelithiation methods from anode and cathode electrodes.Moreover,the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed,based on three key parameters:industry compatibility,prelithiation efficiency,and energy density.Finally,the future trends of improvement in LIB performance by other overlithiated cathode materials are presented,which gives a reference for subsequent research.展开更多
LiNi0.8Co0.1Mn0.1O2(NCM811)|SiOx-graphite(SiO-Gr.)battery chemistry is of intensive attention because its achievable practical energy density is approaching impressively 300 Wh Kg^(-1).However,it still suffers rapid c...LiNi0.8Co0.1Mn0.1O2(NCM811)|SiOx-graphite(SiO-Gr.)battery chemistry is of intensive attention because its achievable practical energy density is approaching impressively 300 Wh Kg^(-1).However,it still suffers rapid capacity fades during repeated cycles,both chemical,electrochemical and mechanical irreversibility contribute.A comprehensive understanding behind the fading behavior of the cell chemistry is required before fully realize the benefits of this chemistry.Herein,the in-situ thickness variation is introduced as a diagnostic technique and is performed on 5-55 Ah NCM811|SiO-Gr cells.With the help of Li reference electrode and in-situ X-ray diffraction device,the correspondence between thickness variation and the electrode potential is carefully investigated.Firstly,the NCM811|SiO-Gr cell is characterized with the maximum cell thickness at around 80%state-of-charge(SOC)in the discharge process,rather than at 100%SOC.Secondly,the electrochemical behaviors during rate charge/discharge are diagnosed,and a Li platting signal is resolved from thickness variation profile at 2C.This work confirms that the thickness monitoring is a nondestructive and informative complement to conventional diagnostic techniques for failure analysis of pouch cells.展开更多
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m...The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.展开更多
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop...The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.展开更多
The initial decomposition of methylamine on Mo(100) surface has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. The adsorption energies of possible spec...The initial decomposition of methylamine on Mo(100) surface has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. The adsorption energies of possible species and the activation energies for possible elementary reactions involved are obtained in the present work. Our results indicate that the barriers decreased with the order of C-NN-HC-H. In addition, metastable adsorption of the abstracted hydrogen atom on the hollow site in the final state is also considered for the N-H and C-H bond breaking. For the C-H bond cleavage, the reaction barrier that the abstracted hydrogen located on the hollow site in the final state is lower than that on the bridge site. However, for the N H bond breaking, the barriers are alike for the abstracted hydrogen on both hollow and bridge sites in the final state.展开更多
Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite ta...Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.展开更多
In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binu...In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance.展开更多
The Cu-flling process in through-silicon via(TSV-Cu)is a key technology for chip stacking and three-dimensional vertical packaging.During this process,defects resulting from chemical-mechanical planarization(CMP)and a...The Cu-flling process in through-silicon via(TSV-Cu)is a key technology for chip stacking and three-dimensional vertical packaging.During this process,defects resulting from chemical-mechanical planarization(CMP)and annealing severely affect the reliability of the chips.Traditional methods of defect characterization are destructive and cumbersome.In this study,a new defect inspection method was developed using Mueller matrix spectroscopic ellipsometry.TSV-Cu with a 3-μm-diameter and 8-μm-deep Cu filling showed three typical types of characteristics:overdishing(defect-OD),protrusion(defect-P),and defect-free.The process dimension for each defect was 13 nm.First,the three typical defects caused by CMP and annealing were investigated.With single-channel deep learning and a Mueller matrix element(MME),the TSV-Cu defect types could be distinguished with an accuracy rate of 99.94%.Next,seven effective MMEs were used as independent channels in the artificial neural network to quantify the height variation in the Cu flling in the z-direction.The accuracy rate was 98.92%after training,and the recognition accuracy reached 1 nm.The proposed approach rapidly and nondestructively evaluates the annealing bonding performance of CMP processes,which can improve the reliability of high-density integration.展开更多
Timely and accurate mapping of rice planting areas is crucial under China's current cropping structure. This study proposes a new paddy rice mapping method by combining phenological parameters and a decision tree ...Timely and accurate mapping of rice planting areas is crucial under China's current cropping structure. This study proposes a new paddy rice mapping method by combining phenological parameters and a decision tree model.Six phenological parameters were developed to identify paddy rice areas based on the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS)Enhanced Vegetation Index (EVI)time series and the Land Surface Water Index (LSWI)time series.The six phenological parameters considered the performance of different land cover types during specific phenological phases (EVI1 and EVI2),one-half of or the entire rice growing cycle (LSWI1 and LSWI2),and the shape of the LSWI time series (KurtosisLSWI and SkewnessLSWI).A hierarchical decision tree model was designed to classify paddy rice areas according to the potential separability of different land cover types in paired phenological parameter spaces.Results showed that the decision tree model was more sensitive to LSWI1,LSWI2,and SkewnessLswi than the other phenological parameters.A paddy rice map of Jiangsu Province for 2015 was generated with an optimal threshold set of(0.4,0.42,9,19,1.5,-1.7,0.0)with a total accuracy of 93.9%.The MODIS-derived paddy rice map generally agreed with the paddy land fraction map from the National Land Cover Dataset project,but there were regional discrepancies because of their different definitions of land use and the inability of MODIS to map paddy rice at a fragmental level.The MODIS-derived paddy rice map showed high correlation (R^2=0.85)with county-level agricultural statistics.The results of this study indicate that the phenological parameter-based paddy rice mapping algorithm could be applied at larger spatial scales.展开更多
A series of robust metallo-aerogels are readily fabricated by pyrolysis of xerogels derived from chitosan-metal(M=Fe,Co,Ni)hydrogels.Owing to the strong coordination between metal ions and the functional groups(NH2 an...A series of robust metallo-aerogels are readily fabricated by pyrolysis of xerogels derived from chitosan-metal(M=Fe,Co,Ni)hydrogels.Owing to the strong coordination between metal ions and the functional groups(NH2 and OH)of chitosan,metallo-aerogels consisting of encapsulated metal-nanoparticles(MNPs)by graphite shells were obtained,as supported by various characterizations including high-resolution transmission electron microscope(HR-TEM),X-ray diffraction(XRD),and Raman.The resulting metalloaerogels could be functioned as highly stable,efficient and selective nanocatalysts towards the hydrogenation of nitroarenes to amines at low catalyst loading(1.2 mol.%-2.4 mol.%).Remarkably,the metallo-aerogels could be reused for more than 30 runs without obvious loss of activity and selectivity.These distinguished performances were attributed to the graphitic shells formed during the pyrolysis,which hampered the possible aggregation of MNPs,prevented metal leaching and increased their stability.展开更多
In this study,the morphological distribution of Ru on nitrogen-doped graphene(NG)could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8(ZIF-8).Th...In this study,the morphological distribution of Ru on nitrogen-doped graphene(NG)could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8(ZIF-8).The cation exchange and host-guest strategies respectively resulted in two different combination modes between Ru precursor and ZIF-8 anchored on graphene.Following pyrolysis of the above precursors,Ru single-atom sites(SASs)with and without Ru nanoparticles(NPs)were formed selectively on NG(denoted as Ru SASs+NPs/NG and Ru SASs/NG,respectively).Ru SASs+NPs/NG exhibited excellent hydrogen evolution reaction(HER)performance in alkaline solutions(η_(10)=12 mV,12.57 A mg^(-1)_(Ru) at 100 mV),which is much better than Ru SASs/NG.The experimental and theoretical study revealed that Ru SASs could adsorb hydrogen with optimal adsorption strength,while Ru NPs could lower the barrier of water molecule dissociation,and thus Ru SASs and Ru NPs could synergistically promote the catalytic performance of HER in alkaline solutions.展开更多
A convenient colorimetric approach for visual detection of melamine in raw milk was realized by using gold nanoparticles(AuNPs)stabilized by an unsymmetrical terpyridyl zinc complex with a thymine fragment at one term...A convenient colorimetric approach for visual detection of melamine in raw milk was realized by using gold nanoparticles(AuNPs)stabilized by an unsymmetrical terpyridyl zinc complex with a thymine fragment at one terminal and a quaternary ammonium salt at the other.Even without pre-addition of melamine or relative additives,obvious color change from red to blue was observed by naked eye in the presence of trace amount of melamine,which was attributed to the alternation of aggregation state of AuNPs caused by the selective binding between the thymine fragment and melamine via triple hydrogenbonding interactions.Remarkably,the detection limit for melamine was as low as 2.4 ppb,providing a highly sensitive and efficient approach for the visual detection of melamine.展开更多
Qinghai Province is one of the four largest pastoral regions in China.Timely monitoring of grass growth and accurate estimation of grass yields are essential for its ecological protection and sustainable development.T...Qinghai Province is one of the four largest pastoral regions in China.Timely monitoring of grass growth and accurate estimation of grass yields are essential for its ecological protection and sustainable development.To estimate grass yields in Qinghai,we used the normalized difference vegetation index(NDVI)time-series data derived from the Moderate-resolution Imaging Spectroradiometer(MODIS)and a pre-existing grassland type map.We developed five estimation approaches to quantify the overall accuracy by combining four data pre-processing techniques(original,Savitzky-Golay(SG),Asymmetry Gaussian(AG)and Double Logistic(DL)),three metrics derived from NDVI time series(VImax,VIseason and VImean)and four fitting functions(linear,second-degree polynomial,power function,and exponential function).The five approaches were investigated in terms of overall accuracy based on 556 ground survey samples in 2016.After assessment and evaluation,we applied the best estimation model in each approach to map the fresh grass yields over the entire Qinghai Province in 2016.Results indicated that:1)For sample estimation,the crossvalidated overall accuracies increased with the increasing flexibility in the chosen fitting variables,and the best estimation accuracy was obtained by the so called“fully flexible model”with R2 of 0.57 and RMSE of 1140 kg/ha.2)Exponential models generally outperformed linear and power models.3)Although overall similar,strong local discrepancies were identified between the grass yield maps derived from the five approaches.In particular,the two most flexible modeling approaches were too sensitive to errors in the pre-existing grassland type map.This led to locally strong overestimations in the modeled grass yields.展开更多
Plant height is an important agronomic trait for lodging resistance and yield.Here,we report a new plantheight-related gene,OsUBR7 in rice(Oryza sativa L.);knockout of OsUBR7 caused fewer cells in internodes,resulting...Plant height is an important agronomic trait for lodging resistance and yield.Here,we report a new plantheight-related gene,OsUBR7 in rice(Oryza sativa L.);knockout of OsUBR7 caused fewer cells in internodes,resulting in a semi-dwarf phenotype.OsUBR7 encodes a putative E3 ligase containing a plant homeodomain finger and a ubiquitin protein ligase E3 component N-recognin 7(UBR7)domain.OsUBR7 interacts with histones and monoubiquitinates H2B(H2Bub1)at lysine148 in coordination with the E2 conjugase OsUBC18.OsUBR7 mediates H2Bub1 at a number of chromatin loci for the normal expression of target genes,including cell-cycle-related and pleiotropic genes,consistent with the observation that cell-cycle progression was suppressed in the osubr7 mutant owing to reductions in H2Bub1 and expression levels at these loci.The genetic divergence of OsUBR7 alleles among japonica and indica cultivars affects their transcriptional activity,and these alleles may have undergone selection during rice domestication.Overall,our results reveal a novel mechanism that mediates H2Bub1 in plants,and UBR7 orthologs could be utilized as an untapped epigenetic resource for crop improvement.展开更多
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金funded by the National Key Research and Development Program of China(no.2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Basic Research Project(no.JCYJ20190808145203535).
文摘This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
基金supported by grants from the National Key Research and Development Program(Grant No.2019YFC1709404)the Science and Technology Department of Shaanxi Province(Grant No.2021LCZX-13).
文摘Exosomes,nanoscale extracellular vesicles(EVs)derived from the invagination of the endosomal membrane,are secreted by a majority of cell types.As carriers of DNA,mRNA,proteins,and microRNAs,exosomes are implicated in regulating biological activities under physiological and pathological conditions.Kidney-derived exosomes,which vary in origin and function,may either contribute to the pathogenesis of disease or represent a potential therapeutic resource.Membranous nephropathy(MN),an autoimmune kidney disease characterized by glomerular damage,is a predominant cause of nephrotic syndrome.Notably,MN,especially idiopathic membranous nephropathy(IMN),often results in end-stage renal disease(ESRD),affecting approximately 30%of patients and posing a considerable economic challenge to healthcare systems.Despite substantial research,therapeutic options remain ineffective at halting IMN progression,underscoring the urgent need for innovative strategies.Emerging evidence has implicated exosomes in IMN’s pathophysiology;Providing a fresh perspective for the discovery of novel biomarkers and therapeutic strategies.This review aims to scrutinize recent developments in exosome-related mechanisms in IMN and evaluate their potential as promising therapeutic targets and diagnostic biomarkers,with the hope of catalyzing further investigations into the utility of exosomes in MN,particularly IMN,ultimately contributing to improved patient outcomes in these challenging disease settings.
基金funded by the National Natural Science Foundation of China(No.U21A20170(X.He))the Ministry of Science and Technology of China(No.2019YFE0100200(X.He)and 2019YFA0705703(L.Wang))the Tsinghua University Initiative Scientific Research Program(No.2019Z02UTY06(X.He)and 2019THFS0132(L.Wang)).The authors also thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center(CERC-CVC2.0,2016-2020)
文摘During the last decade,the rapid development of lithium-ion battery(LIB)energy storage systems has provided significant support for the efficient operation of renewable energy stations.In the coming years,the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations.However,the life of the present LIB is far from meeting such high demand.Therefore,research on the next-generation LIB with ultra-long service life is imminent.Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs.This review systematically summarized the different prelithiation methods from anode and cathode electrodes.Moreover,the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed,based on three key parameters:industry compatibility,prelithiation efficiency,and energy density.Finally,the future trends of improvement in LIB performance by other overlithiated cathode materials are presented,which gives a reference for subsequent research.
基金funded by the Ministry of Science and Technology of China(No.2019YFE0100200,2019YFA0705703)the National Natural Science Foundation of China(No.22075064,No.21875057,U1564205 and 51706117)+1 种基金the Key-Area Research and Development Program of Guangdong Province(No.2020B090919005)the Tsinghua University Initiative Scientific Research Program(No.2019Z02UTY06).
文摘LiNi0.8Co0.1Mn0.1O2(NCM811)|SiOx-graphite(SiO-Gr.)battery chemistry is of intensive attention because its achievable practical energy density is approaching impressively 300 Wh Kg^(-1).However,it still suffers rapid capacity fades during repeated cycles,both chemical,electrochemical and mechanical irreversibility contribute.A comprehensive understanding behind the fading behavior of the cell chemistry is required before fully realize the benefits of this chemistry.Herein,the in-situ thickness variation is introduced as a diagnostic technique and is performed on 5-55 Ah NCM811|SiO-Gr cells.With the help of Li reference electrode and in-situ X-ray diffraction device,the correspondence between thickness variation and the electrode potential is carefully investigated.Firstly,the NCM811|SiO-Gr cell is characterized with the maximum cell thickness at around 80%state-of-charge(SOC)in the discharge process,rather than at 100%SOC.Secondly,the electrochemical behaviors during rate charge/discharge are diagnosed,and a Li platting signal is resolved from thickness variation profile at 2C.This work confirms that the thickness monitoring is a nondestructive and informative complement to conventional diagnostic techniques for failure analysis of pouch cells.
文摘The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity.
基金the National Key Research and Development Program of China (No. 2020YFC1909604)the Shenzhen Key Projects of Technological Research (JSGG2020092514 5800001)。
文摘The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.
基金supported by the National Natural Science Foundation of China (Grants No. 21073113)the Intramural Foundation of Shanxi Datong University
文摘The initial decomposition of methylamine on Mo(100) surface has been investigated by self-consistent (GGA-PW91) density functional theory combined with periodic slab model. The adsorption energies of possible species and the activation energies for possible elementary reactions involved are obtained in the present work. Our results indicate that the barriers decreased with the order of C-NN-HC-H. In addition, metastable adsorption of the abstracted hydrogen atom on the hollow site in the final state is also considered for the N-H and C-H bond breaking. For the C-H bond cleavage, the reaction barrier that the abstracted hydrogen located on the hollow site in the final state is lower than that on the bridge site. However, for the N H bond breaking, the barriers are alike for the abstracted hydrogen on both hollow and bridge sites in the final state.
基金the financial support of National Key Research and Development Program of China(No.2020YFC1909604)National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248)+1 种基金Shenzhen Key Projects of Technological Research(No.JSGG20200925145800001)and Shenzhen Basic Research Project(Nos.JCYJ20190808145203535,JCYJ20190808163005631)for providing financial support for this work.We are also grateful to the Instrumental Analysis Center of Shenzhen University(Xili Campus)for providing the facilities for our material analyzes。
文摘Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.
基金supported by the National Key Research and Development Program of China (2020YFC1909604)Shenzhen Key Projects of Technological Research (JSGG20200925145800001)Shenzhen Science and Technology Program (CJGJZD20210408092801005)。
基金support of Shenzhen Basic Research Project(Nos.JCYJ20170818092720054,JCYJ20190808145203535,and JCYJ20190808144413257)National Natural Science Foundation of China(No.21671136)+3 种基金Postdoctoral Science Foundation of China(No.2019M663085)Major Programs for Science and Technology Development of Shenzhen(Nos.JSGG20160328151657828 and XCL201110060)Major Industrial Projects of Shenzhen(No.s2017001850011)the Project of Natural Science Foundation of Guangdong Province(Nos.2020A1515010380 and 2014A030311028).
文摘In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance.
基金supported by the National Key Research and Development Program of China(2022YFB3206000)the Key Research and Development Program of Hubei(2021BAA173)。
文摘The Cu-flling process in through-silicon via(TSV-Cu)is a key technology for chip stacking and three-dimensional vertical packaging.During this process,defects resulting from chemical-mechanical planarization(CMP)and annealing severely affect the reliability of the chips.Traditional methods of defect characterization are destructive and cumbersome.In this study,a new defect inspection method was developed using Mueller matrix spectroscopic ellipsometry.TSV-Cu with a 3-μm-diameter and 8-μm-deep Cu filling showed three typical types of characteristics:overdishing(defect-OD),protrusion(defect-P),and defect-free.The process dimension for each defect was 13 nm.First,the three typical defects caused by CMP and annealing were investigated.With single-channel deep learning and a Mueller matrix element(MME),the TSV-Cu defect types could be distinguished with an accuracy rate of 99.94%.Next,seven effective MMEs were used as independent channels in the artificial neural network to quantify the height variation in the Cu flling in the z-direction.The accuracy rate was 98.92%after training,and the recognition accuracy reached 1 nm.The proposed approach rapidly and nondestructively evaluates the annealing bonding performance of CMP processes,which can improve the reliability of high-density integration.
基金the National Natural Science Foundation of China (Grant No.41401494)China Postdoctoral Science Foundation (No.2014M552475)Foundation of Shaanxi Educational Committee (No.14JK1745).
文摘Timely and accurate mapping of rice planting areas is crucial under China's current cropping structure. This study proposes a new paddy rice mapping method by combining phenological parameters and a decision tree model.Six phenological parameters were developed to identify paddy rice areas based on the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS)Enhanced Vegetation Index (EVI)time series and the Land Surface Water Index (LSWI)time series.The six phenological parameters considered the performance of different land cover types during specific phenological phases (EVI1 and EVI2),one-half of or the entire rice growing cycle (LSWI1 and LSWI2),and the shape of the LSWI time series (KurtosisLSWI and SkewnessLSWI).A hierarchical decision tree model was designed to classify paddy rice areas according to the potential separability of different land cover types in paired phenological parameter spaces.Results showed that the decision tree model was more sensitive to LSWI1,LSWI2,and SkewnessLswi than the other phenological parameters.A paddy rice map of Jiangsu Province for 2015 was generated with an optimal threshold set of(0.4,0.42,9,19,1.5,-1.7,0.0)with a total accuracy of 93.9%.The MODIS-derived paddy rice map generally agreed with the paddy land fraction map from the National Land Cover Dataset project,but there were regional discrepancies because of their different definitions of land use and the inability of MODIS to map paddy rice at a fragmental level.The MODIS-derived paddy rice map showed high correlation (R^2=0.85)with county-level agricultural statistics.The results of this study indicate that the phenological parameter-based paddy rice mapping algorithm could be applied at larger spatial scales.
基金the National Key R&D Program of China(No.2016YFA0202902)the National Natural Science Foundation of China(Nos.21861132002,21871059,21572036)the Department of Chemistry,Fudan University is gratefully acknowledged.
文摘A series of robust metallo-aerogels are readily fabricated by pyrolysis of xerogels derived from chitosan-metal(M=Fe,Co,Ni)hydrogels.Owing to the strong coordination between metal ions and the functional groups(NH2 and OH)of chitosan,metallo-aerogels consisting of encapsulated metal-nanoparticles(MNPs)by graphite shells were obtained,as supported by various characterizations including high-resolution transmission electron microscope(HR-TEM),X-ray diffraction(XRD),and Raman.The resulting metalloaerogels could be functioned as highly stable,efficient and selective nanocatalysts towards the hydrogenation of nitroarenes to amines at low catalyst loading(1.2 mol.%-2.4 mol.%).Remarkably,the metallo-aerogels could be reused for more than 30 runs without obvious loss of activity and selectivity.These distinguished performances were attributed to the graphitic shells formed during the pyrolysis,which hampered the possible aggregation of MNPs,prevented metal leaching and increased their stability.
基金supported by the National Key Research and Development Program of China(2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)+1 种基金Shenzhen Basic Research Project(JCYJ20190808145203535,JCYJ20190808144413257)the Project of Natural Science Foundation of Guangdong Province(2020A1515010379)。
文摘In this study,the morphological distribution of Ru on nitrogen-doped graphene(NG)could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8(ZIF-8).The cation exchange and host-guest strategies respectively resulted in two different combination modes between Ru precursor and ZIF-8 anchored on graphene.Following pyrolysis of the above precursors,Ru single-atom sites(SASs)with and without Ru nanoparticles(NPs)were formed selectively on NG(denoted as Ru SASs+NPs/NG and Ru SASs/NG,respectively).Ru SASs+NPs/NG exhibited excellent hydrogen evolution reaction(HER)performance in alkaline solutions(η_(10)=12 mV,12.57 A mg^(-1)_(Ru) at 100 mV),which is much better than Ru SASs/NG.The experimental and theoretical study revealed that Ru SASs could adsorb hydrogen with optimal adsorption strength,while Ru NPs could lower the barrier of water molecule dissociation,and thus Ru SASs and Ru NPs could synergistically promote the catalytic performance of HER in alkaline solutions.
基金Financial support from the State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine(No.2016QK122)the Science and Technology Projects of Jiangxi Province(No.20181BBH80007)+1 种基金Shanghai Institute of Quality Inspection and Technical Researchthe Department of Chemistry,Fudan University。
文摘A convenient colorimetric approach for visual detection of melamine in raw milk was realized by using gold nanoparticles(AuNPs)stabilized by an unsymmetrical terpyridyl zinc complex with a thymine fragment at one terminal and a quaternary ammonium salt at the other.Even without pre-addition of melamine or relative additives,obvious color change from red to blue was observed by naked eye in the presence of trace amount of melamine,which was attributed to the alternation of aggregation state of AuNPs caused by the selective binding between the thymine fragment and melamine via triple hydrogenbonding interactions.Remarkably,the detection limit for melamine was as low as 2.4 ppb,providing a highly sensitive and efficient approach for the visual detection of melamine.
基金This research was supported by the National Natural Science Foundation of China(Grant No.41401494)National Key Research and Development Plan(No.2017YFC0404302)Talented Youth Project of Hebei Education Department(No.BJ2018043).
文摘Qinghai Province is one of the four largest pastoral regions in China.Timely monitoring of grass growth and accurate estimation of grass yields are essential for its ecological protection and sustainable development.To estimate grass yields in Qinghai,we used the normalized difference vegetation index(NDVI)time-series data derived from the Moderate-resolution Imaging Spectroradiometer(MODIS)and a pre-existing grassland type map.We developed five estimation approaches to quantify the overall accuracy by combining four data pre-processing techniques(original,Savitzky-Golay(SG),Asymmetry Gaussian(AG)and Double Logistic(DL)),three metrics derived from NDVI time series(VImax,VIseason and VImean)and four fitting functions(linear,second-degree polynomial,power function,and exponential function).The five approaches were investigated in terms of overall accuracy based on 556 ground survey samples in 2016.After assessment and evaluation,we applied the best estimation model in each approach to map the fresh grass yields over the entire Qinghai Province in 2016.Results indicated that:1)For sample estimation,the crossvalidated overall accuracies increased with the increasing flexibility in the chosen fitting variables,and the best estimation accuracy was obtained by the so called“fully flexible model”with R2 of 0.57 and RMSE of 1140 kg/ha.2)Exponential models generally outperformed linear and power models.3)Although overall similar,strong local discrepancies were identified between the grass yield maps derived from the five approaches.In particular,the two most flexible modeling approaches were too sensitive to errors in the pre-existing grassland type map.This led to locally strong overestimations in the modeled grass yields.
基金supported by the Major Program of Guangdong Basic and Applied Basic Research(2019B030302006)the National Natural Science Foundation of China(31921004,31871533,and 31760300)+1 种基金the Laboratory of Lingnan Modern Agriculture Project(NT2021002)the Guangdong Basic and Applied Basic Research Foundation(2019A1515010230).
文摘Plant height is an important agronomic trait for lodging resistance and yield.Here,we report a new plantheight-related gene,OsUBR7 in rice(Oryza sativa L.);knockout of OsUBR7 caused fewer cells in internodes,resulting in a semi-dwarf phenotype.OsUBR7 encodes a putative E3 ligase containing a plant homeodomain finger and a ubiquitin protein ligase E3 component N-recognin 7(UBR7)domain.OsUBR7 interacts with histones and monoubiquitinates H2B(H2Bub1)at lysine148 in coordination with the E2 conjugase OsUBC18.OsUBR7 mediates H2Bub1 at a number of chromatin loci for the normal expression of target genes,including cell-cycle-related and pleiotropic genes,consistent with the observation that cell-cycle progression was suppressed in the osubr7 mutant owing to reductions in H2Bub1 and expression levels at these loci.The genetic divergence of OsUBR7 alleles among japonica and indica cultivars affects their transcriptional activity,and these alleles may have undergone selection during rice domestication.Overall,our results reveal a novel mechanism that mediates H2Bub1 in plants,and UBR7 orthologs could be utilized as an untapped epigenetic resource for crop improvement.