期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of loading transition metal(Mn,Cr,Fe,Cu) oxides on oxygen storage/release properties of CeO2-ZrO2 solid solution 被引量:11
1
作者 Zhizhe Zhai Dali Cui +5 位作者 Yongqi Zhang Yongke Hou Meisheng Cui He Zhang jianhui song Hao Wang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第3期274-280,共7页
Cerium zirconium-based(CZ) oxygen storage materials(OSMs) play a crucial role in three-way catalysts(TWCs),while CZ needs to be modified to satisfy more rigorous emission standard.In this study,transition metal(TMs=Mn... Cerium zirconium-based(CZ) oxygen storage materials(OSMs) play a crucial role in three-way catalysts(TWCs),while CZ needs to be modified to satisfy more rigorous emission standard.In this study,transition metal(TMs=Mn,Cr,Fe,Cu) oxides modified CZ were prepared by incipient wetness impregnation method to improve the oxygen storage capacity of CZ-based materials.To clearly illustrate the influence of TM oxides,N2 adsorption-desorption,X-ray diffraction(XRD),oxygen storage capacity(OSC),temperature programmed reduction by H2(H2-TPR) and X-ray photoelectron spectroscopy(XPS) were used to characterize the physical and chemical properties of samples.It is found that,all modified CZ have higher OSC,lower reduction temperatures than those of pristine CZ.Interaction between TMOs and CZ take precedence over specific surface to influence OSC.Notably,FeOx/CZ has the highest OSC,which is about 1.9 times that of CZ and it could be attributed to synergistic effect between FeOx and CZ;CuOx/CZ has the lowest reduction temperature which is 168℃lower than that of CZ,and it can be explained by hydrogen spillover effect. 展开更多
关键词 Transition METALS CERIA-ZIRCONIA Incipient wetness IMPREGNATION OSC
原文传递
Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions 被引量:2
2
作者 Beibei Ding Dan Zhao +6 位作者 jianhui song Huichang Gao Duoduo Xu Min Xu Xiaodong Cao Lina Zhang Jie Cai 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1405-1414,共10页
Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide(KOH, Na OH and Li OH)/urea solutions. All of the α-c... Light weight and mechanically strong α-chitin aerogels were fabricated using the sol-gel/self-assembly method from α-chitin in different aqueous alkali hydroxide(KOH, Na OH and Li OH)/urea solutions. All of the α-chitin solutions exhibited temperature-induced rapid gelation behavior. 13 C nuclear magnetic resonance(NMR) spectra revealed that the aqueous alkali hydroxide/urea solutions are non-derivatizing solvents for α-chitin. Fourier transform infrared(FT-IR), X-ray diffraction(XRD) and cross-polarization magic angle spinning(CP/MAS) 13 C NMR confirmed that α-chitin has a stable aggregate structure after undergoing dissolution and regeneration. Subsequently, nanostructured α-chitin aerogels were fabricated by regeneration from the chitin solutions in ethanol and then freeze-drying from t-Bu OH. These α-chitin aerogels exhibited high porosity(87% to 94%), low density(0.09 to 0.19 g/cm^3), high specific surface area(419 to 535 m^2/g) and large pore volume(2.7 to 3.8 cm^3/g). Moreover, the α-chitin aerogels exhibited good mechanical properties under compression and tension models. In vitro studies showed that m BMSCs cultured on chitin hydrogels have good biocompatibility. These nanostructured α-chitin aerogels may be useful for various applications, such as catalyst supports, carbon aerogel precursors and biomedical materials. 展开更多
关键词 chitin aerogels alkali hydroxide/urea aqueous solutions mechanical properties biocompatibility
原文传递
Structural relaxation and glass transition behavior of binary hard-ellipse mixtures
3
作者 Liang Wang Baicheng Mei +2 位作者 jianhui song Yuyuan Lu Lijia An 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第5期613-618,共6页
Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the... Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore,we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems. 展开更多
关键词 binary ellipse mixture molecular dynamics simulation glass transition translational relaxation time rotational relaxation time
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部