S-scheme heterostructure photocatalysts utilize the synergistic and superposition effects of materials,ef-fectively separating electrons and holes,maintaining strong redox capacity,and addressing issues en-countered b...S-scheme heterostructure photocatalysts utilize the synergistic and superposition effects of materials,ef-fectively separating electrons and holes,maintaining strong redox capacity,and addressing issues en-countered by current photocatalytic reactions.This review explores the origins and unique benefits of S-scheme heterojunctions.Specifically,we summarized and discussed the effects of different dimensions of semiconductors constituting S-scheme heterojunctions and the similarities and differences in elec-tron transfer processes when constructing heterojunctions.Additionally,we analyzed several methods for proving the formation of S-scheme heterojunctions and the electron transfer process,both directly and indirectly.Finally,we review the applications of S-scheme heterojunctions in various fields of photo-catalysis,including photocatalytic water splitting,pollution degradation,CO_(2) reduction and other related photocatalytic applications.Our hope is that this review will provide an essential reference for the devel-opment and application of S-scheme heterojunction photocatalysis.展开更多
基金the National Natu-ral Science Foundation of China(Nos.22108133,51972180,and 41907315)the Science,Education and Industry Integration of Basic Research Projects of Qilu University of Technology(No.2022PY062)the Youth Innovation Team Development Plan of Universities in Shandong Province(No.2021KJ056).
文摘S-scheme heterostructure photocatalysts utilize the synergistic and superposition effects of materials,ef-fectively separating electrons and holes,maintaining strong redox capacity,and addressing issues en-countered by current photocatalytic reactions.This review explores the origins and unique benefits of S-scheme heterojunctions.Specifically,we summarized and discussed the effects of different dimensions of semiconductors constituting S-scheme heterojunctions and the similarities and differences in elec-tron transfer processes when constructing heterojunctions.Additionally,we analyzed several methods for proving the formation of S-scheme heterojunctions and the electron transfer process,both directly and indirectly.Finally,we review the applications of S-scheme heterojunctions in various fields of photo-catalysis,including photocatalytic water splitting,pollution degradation,CO_(2) reduction and other related photocatalytic applications.Our hope is that this review will provide an essential reference for the devel-opment and application of S-scheme heterojunction photocatalysis.