期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In situ surface-confined fabrication of single atomic Fe-N_(4) on N-doped carbon nanoleaves for oxygen reduction reaction
1
作者 Xiaojing Jiang jianian chen +6 位作者 Fenglei Lyu chen cheng Qixuan Zhong Xuchun Wang Ayaz Mahsud Liang Zhang Qiao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期482-491,I0011,共11页
Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for th... Controllable fabrication of Fe-N-C based single-atom catalysts(SACs)for enhanced electrocatalytic performance is highly desirable but still challenging.Here,an in situ surface-confined strategy was demonstrated for the synthesis of single atomic Fe-N_(4))on N-doped carbon nanoleaves(L-FeNC).The in situ generated Zn3[Fe(CN)6]2 could not only serve as a protection layer against collapse of nanoleaves but also provide abundant Fe source for the formation of Fe-N moieties during pyrolysis,leading to high surface area and high graphitization degree of L-FeNC simultaneously.Benefiting from abundant Fe-N_(4))active sites,enhanced mass and charge transfer,the as-prepared L-FeNC manifested a half-wave potential of 0.89 V for oxygen reduction reaction(ORR)in 0.1 M KOH.A maximum power density of 140 m W cm^(-2)and stable discharge voltage even after operation for 50,000 s have been demonstrated when the L-FeNC was used as air cathode for Zn-air battery.This work not only provided a unique surfaceconfined strategy for the synthesis of two-dimensional nanocarbons,but also demonstrated the significant benefit from rational design and engineering of Fe-N-C SACs,thus offering great opportunities for fabrication of efficient energy conversion and storage devices. 展开更多
关键词 Single atom catalyst Iron-nitrogen-carbon Surface confine Oxygen reduction reaction Metal-organic frameworks
下载PDF
Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction 被引量:3
2
作者 Ayaz Mahsud jianian chen +5 位作者 Xiaolei Yuan Fenglei Lyu Qixuan Zhong Jinxing chen Yadong Yin Qiao Zhang 《Nano Research》 SCIE EI CSCD 2021年第8期2819-2825,共7页
The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth ab... The slow kinetics at the cathode of oxygen reduction reaction(ORR)seriously limits the efficiencies of fuel cells and metal-air batteries.Pt,the state-of-the-art ORR electrocatalyst,suffers from high cost,low earth abundance,and poor stability.Here a self-templated strategy based on metal-organic frameworks(MOFs)is proposed for the fabrication of hollow nitrogen-doped carbon spheres that are embedded with cobalt nanoparticles(Co/HNC).The Co/HNC manifests better ORR activities,methanol tolerance,and stability than commercial Pt/C.The high ORR performance of Co/NHC can be attributed to the hollow structure which provides enlarged electrochemically active surface area,the formation of more Co-N species,and the introduction of defects.This work highlights the significance of rational engineering of MOFs for enhanced ORR activity and stability and offers new routes to the design and synthesis of high-performance electrocatalysts. 展开更多
关键词 COBALT self-templated metal organic framework hollow sphere oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部