Mesoscale eddies are widely distributed in the global ocean.They affect the ocean flow field and material transport,and play an important role in the energy transfer between the ocean and the atmosphere.With the devel...Mesoscale eddies are widely distributed in the global ocean.They affect the ocean flow field and material transport,and play an important role in the energy transfer between the ocean and the atmosphere.With the development of high-resolution satellite observations,many regional studies are emerging on the coupling effects between mesoscale eddies and the atmosphere.In this study,each identified global eddy(2010-2016,about 13 million eddies)is collocated and normalized with sea surface temperature(SST,2010-2014),sea surface wind(2010-2016),sea surface air temperature at 2 m(2010-2016),water vapor(2010-2014),evaporation rate(2010-2016),cloud liquid water(2010-2014),and rainfall rate(2010-2014).Four normalization methods are used:non-rotated normalization,and normalizations based on wind direction,flow direction,and eddy egg direction alignment.Furthermore,the eddy explained variations of the air-sea parameters are calculated to obtain their spatial distribution.The eddy explained variation ranges of the seven parameters are 24%-78%,12%-21%,3%-35%,8%-22%,9%-18%,0-53%,and0-58%,respectively.The influence of mesoscale eddies on the air-sea interface can be summarized as a vertical mixing mechanism.This study is novel in that it explores the overlying air-sea distribution from the perspective of global eddies.The numerical distributions of climatological air-sea parameters are determined by utilizing the multiyear composite overlying air-sea distribution over global eddies using the eddy coordinate system,and the contribution of eddies to this pattern is analyzed.This study is important for the investigation of global climate change.展开更多
Aqueous zinc-ion batteries(AZIBs)are promising contenders for energy storage systems owing to their low cost and high safety.However,their practical application is hindered by uncontrolled Zn dendrites and other side ...Aqueous zinc-ion batteries(AZIBs)are promising contenders for energy storage systems owing to their low cost and high safety.However,their practical application is hindered by uncontrolled Zn dendrites and other side reactions.Here,the three-dimensional(3D)TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior,which has numerous active sites,better electrical conductivity and excellent structural stability.Based on DFT calculation,the built-in electric field(BIEF)formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites.Furthermore,hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction(HER)of zinc anode.Thus,TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm^(-2) and even 650 h at 10 mA·cm^(-2).The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity(248.7 mAh·g−1 at 0.1 A·g−1)and impressive cycle stability(with 71.3%capacity retention after 300 cycles).As well as extending the life of AZIBs,this study is also motivating for other metal anode based secondary batteries.展开更多
基金Supported by the National Natural Science Foundation of China(42030406)Marine Science and Technology Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2018SDKJ0102)National Key Research and Development Program of China(2016YFC1401008 and 2019YFD0901001)。
文摘Mesoscale eddies are widely distributed in the global ocean.They affect the ocean flow field and material transport,and play an important role in the energy transfer between the ocean and the atmosphere.With the development of high-resolution satellite observations,many regional studies are emerging on the coupling effects between mesoscale eddies and the atmosphere.In this study,each identified global eddy(2010-2016,about 13 million eddies)is collocated and normalized with sea surface temperature(SST,2010-2014),sea surface wind(2010-2016),sea surface air temperature at 2 m(2010-2016),water vapor(2010-2014),evaporation rate(2010-2016),cloud liquid water(2010-2014),and rainfall rate(2010-2014).Four normalization methods are used:non-rotated normalization,and normalizations based on wind direction,flow direction,and eddy egg direction alignment.Furthermore,the eddy explained variations of the air-sea parameters are calculated to obtain their spatial distribution.The eddy explained variation ranges of the seven parameters are 24%-78%,12%-21%,3%-35%,8%-22%,9%-18%,0-53%,and0-58%,respectively.The influence of mesoscale eddies on the air-sea interface can be summarized as a vertical mixing mechanism.This study is novel in that it explores the overlying air-sea distribution from the perspective of global eddies.The numerical distributions of climatological air-sea parameters are determined by utilizing the multiyear composite overlying air-sea distribution over global eddies using the eddy coordinate system,and the contribution of eddies to this pattern is analyzed.This study is important for the investigation of global climate change.
基金supported by the National Natural Science Foundation of China(Nos.52302105 and 51962032)the program for Strong Youth Technology Leading Talents(2023CB008-11)+2 种基金the Youth Innovative Top Talents Fund,Shihezi University(CXBJ202203)Youth Science and Technology Innovation Leading Talent Fund,Shihezi(2023RC02)Youth Innovation Promotion Association CAS(2021433).
文摘Aqueous zinc-ion batteries(AZIBs)are promising contenders for energy storage systems owing to their low cost and high safety.However,their practical application is hindered by uncontrolled Zn dendrites and other side reactions.Here,the three-dimensional(3D)TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior,which has numerous active sites,better electrical conductivity and excellent structural stability.Based on DFT calculation,the built-in electric field(BIEF)formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites.Furthermore,hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction(HER)of zinc anode.Thus,TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm^(-2) and even 650 h at 10 mA·cm^(-2).The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity(248.7 mAh·g−1 at 0.1 A·g−1)and impressive cycle stability(with 71.3%capacity retention after 300 cycles).As well as extending the life of AZIBs,this study is also motivating for other metal anode based secondary batteries.