Perovs kite-type Li_(0.33)La_(0.56)TiO_(3)(LLTO)shows greate r advantages than organic liquid electrolytes to be used in all-so lid-state lithium-ion batteries with high energy densities.Ionic liquid[BMIM][BF4]was use...Perovs kite-type Li_(0.33)La_(0.56)TiO_(3)(LLTO)shows greate r advantages than organic liquid electrolytes to be used in all-so lid-state lithium-ion batteries with high energy densities.Ionic liquid[BMIM][BF4]was used to improve the properties of Li_(0.33)La_(0.56)TiO_(3)by attrition milling in this study.The microstructure,crystallinity and lithium-ion conductivity of the samples were measured by scanning electron microscopy(SEM),X-ray diffraction(XRD),and impedance spectroscopy(IS).The total ionic conductivities of the samples LLTO+x wt%[BMIM][BF4]increase upon adding[BMIM][BF4]and the maximum conductivity reaches4.71×10^(-4)S/cm when x=12.5 wt%.The enhancement of the total conductivity is ascribed to the bridging role of the ionic liquid among grains,as evidenced by the low activation energy of 0.17-0.25 eV and the SEM observation.The Li+transference numbers of the hybrid samples are all lower than that of the pure LLTO,indicating the existence of electronic conductions.The hybrid mate rial with a mixed conductivity and good stability in the atmosphere can find uses in all-solid-state lithium-ion batteries to improve the interface contact between electrolytes and electrodes.展开更多
基金supported by the Natural Science Foundation of Hebei Province(E2021502013)Key Research and Development Projects of Hebei Province(21373805D)。
文摘Perovs kite-type Li_(0.33)La_(0.56)TiO_(3)(LLTO)shows greate r advantages than organic liquid electrolytes to be used in all-so lid-state lithium-ion batteries with high energy densities.Ionic liquid[BMIM][BF4]was used to improve the properties of Li_(0.33)La_(0.56)TiO_(3)by attrition milling in this study.The microstructure,crystallinity and lithium-ion conductivity of the samples were measured by scanning electron microscopy(SEM),X-ray diffraction(XRD),and impedance spectroscopy(IS).The total ionic conductivities of the samples LLTO+x wt%[BMIM][BF4]increase upon adding[BMIM][BF4]and the maximum conductivity reaches4.71×10^(-4)S/cm when x=12.5 wt%.The enhancement of the total conductivity is ascribed to the bridging role of the ionic liquid among grains,as evidenced by the low activation energy of 0.17-0.25 eV and the SEM observation.The Li+transference numbers of the hybrid samples are all lower than that of the pure LLTO,indicating the existence of electronic conductions.The hybrid mate rial with a mixed conductivity and good stability in the atmosphere can find uses in all-solid-state lithium-ion batteries to improve the interface contact between electrolytes and electrodes.