Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigen...In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively.By the symplectic method,the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system.As a result,relationships between critical buckling loads and other factors,such as length of pulse load,thickness of shells and circumferential orders,have been achieved.At the same time,symmetric and unsymmetric buckling modes have been discuss.Moreover,numerical results show that modes of post-buckling of shells can be Bamboo node-type,bending type,concave type and so on.Research in this paper provides analytical supports for ultimate load prediction and buckling failure assessment of cylindrical long shells under local axial pulse loads.展开更多
In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed...In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed.In virtue of the surface nanocrystallization that enables to change the material on local positions,the structural deformation is induced and controlled to maximize the energy absorption capacity.A numerical model of the two-staged combined energy absorption structure is established,and the local surface nanocrystallization layout is optimized.The results show that the specific energy absorption of two-staged combined structure with local surface nanocrystallization can be increased by 34.36%compared with the untreated counterpart of the same material and structural shape.The ratio between the first and second peak crushing forces and the energy absorption allocation ratio between the two stages can be adjusted in the ranges of 0.26–0.55 and 0.31–0.45,respectively,which can be controlled by the local surface nanocrystallization designs.The numerical simulation and experimental results are in good agreement,which shows that the design for energy absorption device with local surface nanocrystallization is feasible and effective.展开更多
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.
基金This research is funded by the grants from Dalian Project of Innovation Foundation of Science and Technology(No.2018J11CY005)Research Program of State Key Laboratory of Structural Analysis for Industrial Equipment(No.S18313).
文摘In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively.By the symplectic method,the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system.As a result,relationships between critical buckling loads and other factors,such as length of pulse load,thickness of shells and circumferential orders,have been achieved.At the same time,symmetric and unsymmetric buckling modes have been discuss.Moreover,numerical results show that modes of post-buckling of shells can be Bamboo node-type,bending type,concave type and so on.Research in this paper provides analytical supports for ultimate load prediction and buckling failure assessment of cylindrical long shells under local axial pulse loads.
基金In this research work,the Aeronautical Science Foundation of China(2018ZC63003)State Key Laboratory of Structural Analysis for Industrial Equipment(G19109,S18313)are gratefully acknowledged.
文摘In this paper,a local surface nanocrystallization technology is used for thin-walled structures with square cross sections,and an energy absorption device of two-staged combined energy absorption structure is proposed.In virtue of the surface nanocrystallization that enables to change the material on local positions,the structural deformation is induced and controlled to maximize the energy absorption capacity.A numerical model of the two-staged combined energy absorption structure is established,and the local surface nanocrystallization layout is optimized.The results show that the specific energy absorption of two-staged combined structure with local surface nanocrystallization can be increased by 34.36%compared with the untreated counterpart of the same material and structural shape.The ratio between the first and second peak crushing forces and the energy absorption allocation ratio between the two stages can be adjusted in the ranges of 0.26–0.55 and 0.31–0.45,respectively,which can be controlled by the local surface nanocrystallization designs.The numerical simulation and experimental results are in good agreement,which shows that the design for energy absorption device with local surface nanocrystallization is feasible and effective.