期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A liquid chromatography with tandem mass spectrometry method for quantitating total and unbound ceritinib in patient plasma and brain tumor 被引量:1
1
作者 Xun Bao jianmei wu +1 位作者 Nader Sanai Jing Li 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第1期20-26,共7页
A rapid, sensitive, and robust reversed-phase liquid chromatography with tandem mass spectrometry method was developed and validated for the determination of total and unbound ceritinib, a secondgeneration ALK inhibit... A rapid, sensitive, and robust reversed-phase liquid chromatography with tandem mass spectrometry method was developed and validated for the determination of total and unbound ceritinib, a secondgeneration ALK inhibitor, in patient plasma and brain tumor tissue samples. Sample preparation involved simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a Waters ACQUITY UPLC BEH C_(18) column using a 4-min gradient elution consisting of mobile phase A(0.1% formic acid in water) and mobile phase B(0.1% formic acid in acetonitrile), at a flow rate of 0.4 m L/min. Ceritinib and the internal standard([^(13)C_6]ceritinib) were monitored using multiple reaction monitoring mode under positive electrospray ionization. The lower limit of quantitation(LLOQ) was 1 n M of ceritinib in plasma. The calibration curve was linear over ceritinib concentration range of 1–2000 n M in plasma. The intra-and interday precision and accuracy were within the generally accepted criteria for bioanalytical method( o15%).The method was successfully applied to assess ceritinib brain tumor penetration, as assessed by the unbound drug brain concentration to unbound drug plasma concentration ratio, in patients with brain tumors. 展开更多
关键词 Ceritinib REVERSED-PHASE liquid chromatography with tandem mass spectrometry (LC–MS/MS) FRACTION unbound in PLASMA FRACTION unbound in BRAIN tissue BRAIN tumor penetration Unbound brain-to-plasma partition coefficient
下载PDF
All‑Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor 被引量:3
2
作者 Xing Qing Huijun Chen +9 位作者 Fanjia Zeng Kangyu Jia Qing Shu jianmei wu Huimin Xu Weiwei Lei Dan Liu Xungai Wang Mufang Li Dong Wang 《Advanced Fiber Materials》 SCIE EI 2023年第3期1025-1036,共12页
Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of as... Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of assembling a self-powered biosensor,comprising a variety of materials with different levels of hardness,and supplementing with a booster or energy storage device,herein,an all-fiber integrated thermoelectrically powered physiological monitoring device(FPMD),is proposed and evaluated for production at an industrial scale.For the first time,an organic electrochemical transistor(OECT)biosensor is enabled by thermoelectric fabrics(TEFs)adaptively,sustainably and steadily without any additional accessories.Moreover,both the OECT and TEFs are constructed using a cotton/poly(3,4-ethylenedioxythiophene):poly(styrenesulfon ate)/dimethylsulfoxide/(3-glycidyloxypropyl)trimethoxysilane(PDG)yarn,which is lightweight,robust(90°bending for 1000 cycles)and sweat-resistant(ΔR/R0=1.9%).A small temperature gradient(ΔT=2.2 K)between the environment and the human body can drive the high-gain OECT(71.08 mS)with high fidelity,and a good signal to noise ratio.For practical applications,the on-body FPMD produced an enduring and steady output signal and demonstrated a linear monitoring region(sensitivity of 30.4 NCR(normalized current response)/dec,10 nM~50µM)for glucose in artificial sweat with reliable performance regarding anti-interference and reproducibility.This device can be expanded to the monitoring of various bio-markers and provides a new strategy for constructing wearable,comfortable,highly integrated and self-powered biosensors. 展开更多
关键词 Self-powered biosensor All-fiber integrated device Thermoelectric fabrics Fiber-assembled transistor Personal healthcare monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部