To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin(SF)macromolecules,a gene motif f(1)encoding this fragment and its multimers(f(4)and f(8))were biosynthesize...To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin(SF)macromolecules,a gene motif f(1)encoding this fragment and its multimers(f(4)and f(8))were biosynthesized from Escherichia coli BL21.Based on the positive application potential of SF materials for the vascular tissue engineering,this study focused on examining the active response of these polypeptides to vascular endothelial cells.Biosynthetic polypeptides F(1),F(4),and F(8)were separately grafted onto the surfaces of bioinert polyethylene terephthalate(PET)films,resulting in remarkable improvements in the spread and proliferation of human umbilical vein endothelial cells(HUVECs).Using the same grafting dose,the activity of cells on polypeptide-modified PET films enhanced with the increase of the molecular weight of those grafted polypeptides from F(1)to F(8).Meanwhile,the growth of cells on the surface of the alkaline-treated PET film was improved,indicating that the hydrophilicity of the surface material had influence on the growth of HUVECs.Moreover,on surfaces with the same water contact angle,the spread and proliferation activity of cells on PET films were significantly lower than those on polypeptide-modified PET films.展开更多
Minimizing energy loss(E_(loss))plays a key role in improving the power conversion efficiencies(PCEs)of organic solar cells(OSCs).Here,to reveal the feasibility of the asymmetric molecular strategy in designing high-e...Minimizing energy loss(E_(loss))plays a key role in improving the power conversion efficiencies(PCEs)of organic solar cells(OSCs).Here,to reveal the feasibility of the asymmetric molecular strategy in designing high-efficiency and low E_(loss)s OSC materials,we adopt the alkyl-alkoxy modification to design an asymmetric non-fullerene acceptor(NFA)named OC8-4F,where its symmetric alkyl-and alkoxy-substituted counterparties(2OC8-4F,eC9-4F)are also prepared.The results suggest that the introduction of a symmetric alkoxy at the edge of eC9-4F can effectively decrease the lowest unoccupied molecular orbit level without greatly changing the highest occupied molecular orbit level,leading to a mediated bandgap.In the devices,the OC8-4F possesses well-balanced charge generation and E_(loss),giving the highest PCE of 18%.Our results imply that finely tuning the asymmetric structure can be used as an effective molecular design strategy to improve the photovoltaic performance of OSCs.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51873141).
文摘To determine the contribution of non-repetitive domains to the bioactivity of the heavy chain in silk fibroin(SF)macromolecules,a gene motif f(1)encoding this fragment and its multimers(f(4)and f(8))were biosynthesized from Escherichia coli BL21.Based on the positive application potential of SF materials for the vascular tissue engineering,this study focused on examining the active response of these polypeptides to vascular endothelial cells.Biosynthetic polypeptides F(1),F(4),and F(8)were separately grafted onto the surfaces of bioinert polyethylene terephthalate(PET)films,resulting in remarkable improvements in the spread and proliferation of human umbilical vein endothelial cells(HUVECs).Using the same grafting dose,the activity of cells on polypeptide-modified PET films enhanced with the increase of the molecular weight of those grafted polypeptides from F(1)to F(8).Meanwhile,the growth of cells on the surface of the alkaline-treated PET film was improved,indicating that the hydrophilicity of the surface material had influence on the growth of HUVECs.Moreover,on surfaces with the same water contact angle,the spread and proliferation activity of cells on PET films were significantly lower than those on polypeptide-modified PET films.
基金supported by the National Natural Science Foundation of China(61404116,11975212)Guangdong Basic and Applied Basic Research Foundation(2023A1515010073)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(KZ15Z20053)。
基金support from the National Natural Science Foundation of China(Nos.22122905,22075301,21835006)J.H.is supported by Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)the"Dual Carbon"Science and Technology Innovation of Jiangsu province(Industrial Prospect and Key Technology Research program)(BE2022021).
文摘Minimizing energy loss(E_(loss))plays a key role in improving the power conversion efficiencies(PCEs)of organic solar cells(OSCs).Here,to reveal the feasibility of the asymmetric molecular strategy in designing high-efficiency and low E_(loss)s OSC materials,we adopt the alkyl-alkoxy modification to design an asymmetric non-fullerene acceptor(NFA)named OC8-4F,where its symmetric alkyl-and alkoxy-substituted counterparties(2OC8-4F,eC9-4F)are also prepared.The results suggest that the introduction of a symmetric alkoxy at the edge of eC9-4F can effectively decrease the lowest unoccupied molecular orbit level without greatly changing the highest occupied molecular orbit level,leading to a mediated bandgap.In the devices,the OC8-4F possesses well-balanced charge generation and E_(loss),giving the highest PCE of 18%.Our results imply that finely tuning the asymmetric structure can be used as an effective molecular design strategy to improve the photovoltaic performance of OSCs.