In this paper,the nanoindentation simulation on the two models of neat polyethylene(PE) and the polyethylene incorporated with 25wt% POSS(POSS-PE) is performed to reveal the reinforcing mechanism of the mechanical...In this paper,the nanoindentation simulation on the two models of neat polyethylene(PE) and the polyethylene incorporated with 25wt% POSS(POSS-PE) is performed to reveal the reinforcing mechanism of the mechanical properties.The influence of the indenter shapes on nanoindentation is researched by using three different shapes of diamond indenters(cube-corner indenter,cylindrical indenter with spherical tip and cylindrical indenter with flat tip).The molecular mechanics method is adopted to eliminate the temperature effects.Under different indenters,the load-displacement responses,hardnesses(indentation hardness and Martens hardness) and Young's moduli of PE and POSS-PE are obtained.Compared with PE,all the mechanical properties are improved dramatically.Then,we analyze the source of loading drop phenomena and the enhancement mechanism of POSS.Furthermore,the result shows that the different shapes of indenters cause a large impact on indentation hardness,but a little impact on Martens hardness.And Young's modulus of the flat indenter is much larger than that of cube-corner indenter and spherical indenter.展开更多
An experimental technique for the determination of the relative acoustic nonnnearity parameter of materials with Rayleigh waves excited directly is presented. Rayleigh surface waves were directly generated in material...An experimental technique for the determination of the relative acoustic nonnnearity parameter of materials with Rayleigh waves excited directly is presented. Rayleigh surface waves were directly generated in materials by the specific piezoelectric transducer fixed at the specimen's edge, and were measured with a laser interferometer system. After the Rayleigh wave signals were processed with FFT method, the relative acoustic nonlinearity parameter of materials was then determined from the absolute magnitudes of the fundamental and second harmonics of Rayleigh surface waves. This procedure was used to determine the acoustic non- linearity parameters of aluminum alloys 2024 and 6061. It is shown that the results comply well with those available in the literature; this method can thus be used to evaluate the acous- tic nonlinearity parameter of materials effectively. This technique can provide a practical way in the nondestructive characterization of degradation of materials and structures in the early fatigue life.展开更多
This study presents a general approach to derive the acoustic nonlinearity parameters induced by various types of dislocation configurations including dislocation strings (monopoles), dislocation dipoles, dislocatio...This study presents a general approach to derive the acoustic nonlinearity parameters induced by various types of dislocation configurations including dislocation strings (monopoles), dislocation dipoles, dislocation pileups and extended dislocations. It is found that expressions of the acoustic nonlinearity parameter induced by such a variety of dislocation con- figurations share a common mathematical form. They are all scaled with (Lch/b)n, where Lch is a characteristic length of the dislocation configuration, b is the magnitude of the Burgers vector, and n is either 3 or 4. Semiquantitative analysis is presented to compare the magnitudes of the acoustic nonlinearity parameters among different types of dislocation configurations.展开更多
基金supported by the National Natural Science Foundation of China (No. 10972066)the Doctoral Program Foundation of Institutions of Higher Education of China (No. 20070213054)+1 种基金the Natural Science Foundation of the Heilongjiang Province of China (A2007-10)the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF. 2010070)
文摘In this paper,the nanoindentation simulation on the two models of neat polyethylene(PE) and the polyethylene incorporated with 25wt% POSS(POSS-PE) is performed to reveal the reinforcing mechanism of the mechanical properties.The influence of the indenter shapes on nanoindentation is researched by using three different shapes of diamond indenters(cube-corner indenter,cylindrical indenter with spherical tip and cylindrical indenter with flat tip).The molecular mechanics method is adopted to eliminate the temperature effects.Under different indenters,the load-displacement responses,hardnesses(indentation hardness and Martens hardness) and Young's moduli of PE and POSS-PE are obtained.Compared with PE,all the mechanical properties are improved dramatically.Then,we analyze the source of loading drop phenomena and the enhancement mechanism of POSS.Furthermore,the result shows that the different shapes of indenters cause a large impact on indentation hardness,but a little impact on Martens hardness.And Young's modulus of the flat indenter is much larger than that of cube-corner indenter and spherical indenter.
基金supported by the National Natural Science Foundation of China(10228204)Beijing Natural Science Foundation(KZ200810005001)Foundation of Beijing Jiaotong University(2007XM030)
文摘An experimental technique for the determination of the relative acoustic nonnnearity parameter of materials with Rayleigh waves excited directly is presented. Rayleigh surface waves were directly generated in materials by the specific piezoelectric transducer fixed at the specimen's edge, and were measured with a laser interferometer system. After the Rayleigh wave signals were processed with FFT method, the relative acoustic nonlinearity parameter of materials was then determined from the absolute magnitudes of the fundamental and second harmonics of Rayleigh surface waves. This procedure was used to determine the acoustic non- linearity parameters of aluminum alloys 2024 and 6061. It is shown that the results comply well with those available in the literature; this method can thus be used to evaluate the acous- tic nonlinearity parameter of materials effectively. This technique can provide a practical way in the nondestructive characterization of degradation of materials and structures in the early fatigue life.
文摘This study presents a general approach to derive the acoustic nonlinearity parameters induced by various types of dislocation configurations including dislocation strings (monopoles), dislocation dipoles, dislocation pileups and extended dislocations. It is found that expressions of the acoustic nonlinearity parameter induced by such a variety of dislocation con- figurations share a common mathematical form. They are all scaled with (Lch/b)n, where Lch is a characteristic length of the dislocation configuration, b is the magnitude of the Burgers vector, and n is either 3 or 4. Semiquantitative analysis is presented to compare the magnitudes of the acoustic nonlinearity parameters among different types of dislocation configurations.