In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
Low temperature as abiotic stress adversely impacts plant growth and development, and limits the ecological distribution of plants as well. Throughout their long evolutionary history, plants have developed a range of ...Low temperature as abiotic stress adversely impacts plant growth and development, and limits the ecological distribution of plants as well. Throughout their long evolutionary history, plants have developed a range of complicated and precise molecular regulatory mechanisms to deal with low-temperature stress, involving the activation of signal transduction pathways and the regulation of related genes. In this review, we provide a systematic summary of the most recent research findings regarding three hypotheses of cellular perception of low-temperature signals and two major intracellular low-temperature signaling pathways, including CBF-dependent signaling pathways and CBF-independent signaling pathways. Focus is placed on the functions of each component of the ICE-CBF-COR signaling cascade as well as their interrelationships. This review concludes that although some progress has been made in the identification, function, and mechanism of low-temperature response genes, their roles in the low-temperature regulatory network and molecular mechanisms still need to be studied in detail, which will be of great significance for improving the low-temperature tolerance of plants and adapting to climate change.展开更多
Background There have been no effective treatments for slowing or reversing Alzheimer’s disease(AD)until now.Growing preclinical evidence,including this study,suggests that mesenchymal stem cells-secreted exosomes(MS...Background There have been no effective treatments for slowing or reversing Alzheimer’s disease(AD)until now.Growing preclinical evidence,including this study,suggests that mesenchymal stem cells-secreted exosomes(MSCs-Exos)have the potential to cure AD.Aims The first three-arm,drug-intervention,phase I/II clinical trial was conducted to explore the safety and efficacy of allogenic human adipose MSCs-Exos(ahaMSCs-Exos)in patients with mild to moderate AD.Methods The eligible subjects were assigned to one of three dosage groups,intranasally administrated with ahaMSCs-Exos two times per week for 12 weeks,and underwent follow-up visits at weeks 16,24,36 and 48.Results No adverse events were reported.In the medium-dose arm,Alzheimer’s Disease Assessment Scale–Cognitive section(ADAS-cog)scores decreased by 2.33(1.19)and the basic version of Montreal Cognitive Assessment scores increased by 2.38(0.58)at week 12 compared with baseline levels,indicating improved cognitive function.Moreover,the ADAS-cog scores in the medium-dose arm decreased continuously by 3.98 points until week 36.There were no significant differences in altered amyloid or tau deposition among the three arms,but hippocampal volume shrank less in the medium-dose arm to some extent.Conclusions Intranasal administration of ahaMSCs-Exos was safe and well tolerated,and a dose of at least 4×10^(8)particles could be selected for further clinical trials.展开更多
A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean-global atmosphere (POGA) experiment,...A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean-global atmosphere (POGA) experiment, with fixed radiative forcing, is conducted to evaluate the DIOD variability and its relationship with the TPDV. In this experiment, the sea surface temperature anomalies are restored to observations over the tropical Pacific, but left as interactive with the atmosphere elsewhere. The TPDV-forced DIOD, represented as the ensemble mean of 10 simulations in POGA, accounts for one third of the total variance. The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback. Thermocline anomalies do not exhibit a propagating signal, indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean. The DIOD-TPDV correlation differs among the 10 simulations, with a low correlation corresponding to a strong internal DIOD independent of the TPDV. The variance of this internal DIOD depends on the background state in the Indian Ocean, modulated by the thermocline depth off Sumatra/Java.展开更多
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f...The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.展开更多
Glanzmann’s thrombasthenia(GT)is an inherited autosomal recessive bleeding disorder,resulting from mutations in the ITGA2B and ITGB3 genes,that lead to a defect in the platelet membrane integrinαIIbβ3.[1]As integri...Glanzmann’s thrombasthenia(GT)is an inherited autosomal recessive bleeding disorder,resulting from mutations in the ITGA2B and ITGB3 genes,that lead to a defect in the platelet membrane integrinαIIbβ3.[1]As integrinαIIbβ3 plays an important role in thrombus formation,the clinical manifestation of GT includes bleeding(mostly mucocutaneous)and purpura.For this reason,patients with GT are typically thought to be unlikely to suffer from thromboembolic incidents.Antithrombin is an anticoagulant that inhibits thrombin and is activated factor X and other serine proteases in the coagulation cascade.[2]Antithrombin deficiency is an autosomal dominant hereditary disease with an approximate prevalence of 1/500 in the overall population.[3]In contrast to the hemorrhagic tendency of GT,patients with antithrombin deficiency are at increased risk of thromboembolism,especially in the venous system.Herein,we describe a rare case of GT and antithrombin deficiency coexisting in a single patient.Rivaroxaban was used for the treatment of pulmonary embolism(PE)and deep vein thrombosis(DVT).展开更多
This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(lan...This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.展开更多
In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the wi...In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.展开更多
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSC...This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation, hUCMSCs were co-cultured with normal or AI31.4o-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural ceils.展开更多
For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is t...For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is tested on three chaotic systems with different complexity. The results indicate that the NLLE spectrum realistically characterizes the growth rates of initial error vectors along different directions from the linear to nonlinear phases of error growth. This represents an improvement over the traditional Lyapunov exponent spectrum, which only characterizes the error growth rates during the linear phase of error growth. In addition, because the NLLE spectrum can effectively separate the slowly and rapidly growing perturbations, it is shown to be more suitable for estimating the predictability of chaotic systems, as compared to the traditional Lyapunov exponent spectrum.展开更多
There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemis...There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.展开更多
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ...The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.展开更多
In this study,the nonlinear local Lyapunov exponent(NLLE)approach was used to quantitatively determine the predictability limit of tropical cyclone(TC)tracks based on observed TC track data obtained from the Joint Typ...In this study,the nonlinear local Lyapunov exponent(NLLE)approach was used to quantitatively determine the predictability limit of tropical cyclone(TC)tracks based on observed TC track data obtained from the Joint Typhoon Warning Center.The results show that the predictability limit of all TC tracks over the whole western North Pacific(WNP)basin is about 102 h,and the average lifetime of all TC tracks is about 174 h.The predictability limits of the TC tracks for short-,medium-,and long-lived TCs are approximately 72 h,120 h,and 132 h,respectively.The predictability limit of the TC tracks depends on the TC genesis location,lifetime,and intensity,and further analysis indicated that these three metrics are closely related.The more intense and longer-lived TCs tend to be generated on the eastern side of the WNP(EWNP),whereas the weaker and shorter-lived TCs tend to form in the west of the WNP(WWNP)and the South China Sea(SCS).The relatively stronger and longer-lived TCs,which are generated mainly in the EWNP,have a longer travel time before they curve northeastwards and hence tend to be more predictable than the relatively weaker and shorter-lived TCs that form in the WWNP region and SCS.Furthermore,the results show that the predictability limit of the TC tracks obtained from the best-track data may be underestimated due to the relatively short observational records currently available.Further work is needed,employing a numerical model to assess the predictability of TC tracks.展开更多
In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively est...In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.展开更多
Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in ...Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.展开更多
The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold ev...The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold events present obvious layered structures in phase space.The maximum prediction lead times of each warm(cold)event on individual circles concentric with the distribution of warm(cold)regime events are roughly the same,whereas the maximum prediction lead time of events on other circles are different.Statistical results show that warm events are more predictable than cold events.展开更多
Pakistan is a country with diversified features in terms of geography and climate. It is an agriculture based country, mainly dependent on Indus water system. In Pakistan, there are loftyplateaus to the north and Arab...Pakistan is a country with diversified features in terms of geography and climate. It is an agriculture based country, mainly dependent on Indus water system. In Pakistan, there are loftyplateaus to the north and Arabian Sea in the south, while the interior portion is covered with plateaus or agriculture plains. For such a region, any attempt to monitor/analyze climatic data requires some more specific details. A statistical software “SDSM” is utilized for downscaling daily temperature data of Pakistan and the results generated are compared with the output of a recommended model “ECHAM5”. After analysis, it revealed that comparatively SDSM produced much better results. The outputs from both the approaches were correlated with the observed data;SDSM-observed gave values for correlation coefficient R2 in the range of 81% - 94% whereas ECHAM5-observed produced 73% - 87% for different meteorological stations of Pakistan. On the basis of this study, SDSM can be recommended for future scenario generation of temperature data of Pakistan as well.展开更多
In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is given by qubits, and the ou...In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is given by qubits, and the output is the probability of qubit in the state . By employing the gradient descent method, a training algorithm is introduced. The experimental results show that this model is superior to the common BP networks.展开更多
The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid wi...The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.展开更多
Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In thi...Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In this study,we perform a theoretical study to investigate the relative effects of initial condition and model errors on local prediction lead time of given states in the Lorenz model.Using the backward nonlinear local Lyapunov exponent method,the prediction lead time,also called local backward predictability limit(LBPL),of given states induced by the two types of errors can be quantitatively estimated.Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of states.On an individual circular orbit,the LBPLs are roughly the same,whereas they are different on different orbits.The spatial distributions of LBPLs show that the relative effects of initial condition and model errors on local backward predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes.When the error magnitude is fixed,the differences between the LBPLs vary with the locations of given states.The larger differences are mainly located on the inner trajectories of regimes.When the error magnitudes are different,the dissimilarities in LBPLs are diverse for the same given state.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
文摘Low temperature as abiotic stress adversely impacts plant growth and development, and limits the ecological distribution of plants as well. Throughout their long evolutionary history, plants have developed a range of complicated and precise molecular regulatory mechanisms to deal with low-temperature stress, involving the activation of signal transduction pathways and the regulation of related genes. In this review, we provide a systematic summary of the most recent research findings regarding three hypotheses of cellular perception of low-temperature signals and two major intracellular low-temperature signaling pathways, including CBF-dependent signaling pathways and CBF-independent signaling pathways. Focus is placed on the functions of each component of the ICE-CBF-COR signaling cascade as well as their interrelationships. This review concludes that although some progress has been made in the identification, function, and mechanism of low-temperature response genes, their roles in the low-temperature regulatory network and molecular mechanisms still need to be studied in detail, which will be of great significance for improving the low-temperature tolerance of plants and adapting to climate change.
基金supported by the Ministry of Science and Technology of the People's Republic of China(2021ZD0201804,GW)National Natural Science Foundation of China(92068111,81973272,XG,81903582,QS)+1 种基金Natural Science Foundation of Shanghai(219ZR1431500,GW)Shanghai Science and Technology Committee(121XD1422200,XG)and Cellular Biomedicine Group(CBMG,Shanghai,China).
文摘Background There have been no effective treatments for slowing or reversing Alzheimer’s disease(AD)until now.Growing preclinical evidence,including this study,suggests that mesenchymal stem cells-secreted exosomes(MSCs-Exos)have the potential to cure AD.Aims The first three-arm,drug-intervention,phase I/II clinical trial was conducted to explore the safety and efficacy of allogenic human adipose MSCs-Exos(ahaMSCs-Exos)in patients with mild to moderate AD.Methods The eligible subjects were assigned to one of three dosage groups,intranasally administrated with ahaMSCs-Exos two times per week for 12 weeks,and underwent follow-up visits at weeks 16,24,36 and 48.Results No adverse events were reported.In the medium-dose arm,Alzheimer’s Disease Assessment Scale–Cognitive section(ADAS-cog)scores decreased by 2.33(1.19)and the basic version of Montreal Cognitive Assessment scores increased by 2.38(0.58)at week 12 compared with baseline levels,indicating improved cognitive function.Moreover,the ADAS-cog scores in the medium-dose arm decreased continuously by 3.98 points until week 36.There were no significant differences in altered amyloid or tau deposition among the three arms,but hippocampal volume shrank less in the medium-dose arm to some extent.Conclusions Intranasal administration of ahaMSCs-Exos was safe and well tolerated,and a dose of at least 4×10^(8)particles could be selected for further clinical trials.
基金supported by National Key R&D Program of China(2016YFA0601803)National Natural Science Foundation of China(NSFC)project(41606008,41525019)+3 种基金the State Oceanic Administration of China(GASI-IPOVAI-02)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(Project No.LTO1603)the Japan Society for the Promotion of Science[Grantin-Aid for Young Scientists(A)JP15H05466]and the Japanese Ministry of Environment(Environment Research and Technology Development Fund 2-1503)
文摘A robust decadal Indian Ocean dipolar variability (DIOD) is identified in observations and found to be related to tropical Pacific decadal variability (TPDV). A Pacific Ocean-global atmosphere (POGA) experiment, with fixed radiative forcing, is conducted to evaluate the DIOD variability and its relationship with the TPDV. In this experiment, the sea surface temperature anomalies are restored to observations over the tropical Pacific, but left as interactive with the atmosphere elsewhere. The TPDV-forced DIOD, represented as the ensemble mean of 10 simulations in POGA, accounts for one third of the total variance. The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback. Thermocline anomalies do not exhibit a propagating signal, indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean. The DIOD-TPDV correlation differs among the 10 simulations, with a low correlation corresponding to a strong internal DIOD independent of the TPDV. The variance of this internal DIOD depends on the background state in the Indian Ocean, modulated by the thermocline depth off Sumatra/Java.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3001204)。
文摘The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.
文摘Glanzmann’s thrombasthenia(GT)is an inherited autosomal recessive bleeding disorder,resulting from mutations in the ITGA2B and ITGB3 genes,that lead to a defect in the platelet membrane integrinαIIbβ3.[1]As integrinαIIbβ3 plays an important role in thrombus formation,the clinical manifestation of GT includes bleeding(mostly mucocutaneous)and purpura.For this reason,patients with GT are typically thought to be unlikely to suffer from thromboembolic incidents.Antithrombin is an anticoagulant that inhibits thrombin and is activated factor X and other serine proteases in the coagulation cascade.[2]Antithrombin deficiency is an autosomal dominant hereditary disease with an approximate prevalence of 1/500 in the overall population.[3]In contrast to the hemorrhagic tendency of GT,patients with antithrombin deficiency are at increased risk of thromboembolism,especially in the venous system.Herein,we describe a rare case of GT and antithrombin deficiency coexisting in a single patient.Rivaroxaban was used for the treatment of pulmonary embolism(PE)and deep vein thrombosis(DVT).
基金supported by the National Natural Science Foundation of China(41790474)the State Oceanic Administration International Cooperation Program on Global Change and Air–Sea Interactions(GASI-IPOVAI-03)
文摘This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.
基金supported by the National Natural Science Foundation of China(NSFC)Project(Grant No.41790474)Shandong Natural Science Foundation Project(Grant No.ZR2019ZD12)Fundamental Research Funds for the Central Universities(Grant No.201962009).
文摘In this paper,we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature(EASAT)and EASAT decadal prediction.The observational analysis shows that the winter EASAT and East Asian minimum SAT(EAmSAT)display strong in-phase fluctuations and a significant 60-80-year multidecadal variability,apart from a long-term warming trend.The winter EASAT experienced a decreasing trend in the last two decades,which is consistent with the occurrence of extremely cold events in East Asia winters in recent years.The winter NAO leads the detrended winter EASAT by 12-18 years with the greatest significant positive correlation at the lead time of 15 years.Further analysis shows that ENSO may affect winter EASAT interannual variability,but does not affect the robust lead relationship between the winter NAO and EASAT.We present the coupled oceanic-atmospheric bridge(COAB)mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of~15 years on the Atlantic Multidecadal Oscillation(AMO)and Africa-Asia multidecadal teleconnection(AAMT)pattern.An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism,with good hindcast performance.The winter EASAT for 2020-34 is predicted to keep on fluctuating downward until~2025,implying a high probability of occurrence of extremely cold events in coming winters in East Asia,followed by a sudden turn towards sharp warming.The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.
文摘This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation, hUCMSCs were co-cultured with normal or AI31.4o-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural ceils.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502)the National Program on Global Change and Air–Sea Interaction (Grant No. GASI-IPOVAI06)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is tested on three chaotic systems with different complexity. The results indicate that the NLLE spectrum realistically characterizes the growth rates of initial error vectors along different directions from the linear to nonlinear phases of error growth. This represents an improvement over the traditional Lyapunov exponent spectrum, which only characterizes the error growth rates during the linear phase of error growth. In addition, because the NLLE spectrum can effectively separate the slowly and rapidly growing perturbations, it is shown to be more suitable for estimating the predictability of chaotic systems, as compared to the traditional Lyapunov exponent spectrum.
基金supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No.GYHY201506032)an NSFC project (Grant No.41405086)and a National Key R&D Program of China (Grant No.2016YFA0601801)
文摘There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.
文摘The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.
基金supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No.41522502)the National Program on Global Change and Air–Sea Interaction (Grant No.GASI-IPOVAI03,GASI-IPOVAI-06)+1 种基金the Beijige Open Research Fund for Nanjing Joint Center of Atmospheric Research (Grant No.NJCAR2018ZD03)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2015BAC03B07)
文摘In this study,the nonlinear local Lyapunov exponent(NLLE)approach was used to quantitatively determine the predictability limit of tropical cyclone(TC)tracks based on observed TC track data obtained from the Joint Typhoon Warning Center.The results show that the predictability limit of all TC tracks over the whole western North Pacific(WNP)basin is about 102 h,and the average lifetime of all TC tracks is about 174 h.The predictability limits of the TC tracks for short-,medium-,and long-lived TCs are approximately 72 h,120 h,and 132 h,respectively.The predictability limit of the TC tracks depends on the TC genesis location,lifetime,and intensity,and further analysis indicated that these three metrics are closely related.The more intense and longer-lived TCs tend to be generated on the eastern side of the WNP(EWNP),whereas the weaker and shorter-lived TCs tend to form in the west of the WNP(WWNP)and the South China Sea(SCS).The relatively stronger and longer-lived TCs,which are generated mainly in the EWNP,have a longer travel time before they curve northeastwards and hence tend to be more predictable than the relatively weaker and shorter-lived TCs that form in the WWNP region and SCS.Furthermore,the results show that the predictability limit of the TC tracks obtained from the best-track data may be underestimated due to the relatively short observational records currently available.Further work is needed,employing a numerical model to assess the predictability of TC tracks.
基金jointly supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502)the National Program on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-03)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07)
文摘In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states.Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system,the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.
基金jointly supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201506013)the 973 project of China(Grant No.2012CB955200)+2 种基金the National Natural Science Foundation of China for Excellent Young Scholars(Grant No.41522502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA11010303)the National Natural Science Foundation of China(Grant Nos.41575075,91437216 and 91637312)
文摘Previous studies suggest that the atmospheric precursor of E1 Nifio-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.
基金supported by the National Natural Science Foundation of China(Grant No.41790474)the National Program on Global Change and Air−Sea Interaction(GASI-IPOVAI-03 GASI-IPOVAI-06).
文摘The backward nonlinear local Lyapunov exponent method(BNLLE)is applied to quantify the predictability of warm and cold events in the Lorenz model.Results show that the maximum prediction lead times of warm and cold events present obvious layered structures in phase space.The maximum prediction lead times of each warm(cold)event on individual circles concentric with the distribution of warm(cold)regime events are roughly the same,whereas the maximum prediction lead time of events on other circles are different.Statistical results show that warm events are more predictable than cold events.
文摘Pakistan is a country with diversified features in terms of geography and climate. It is an agriculture based country, mainly dependent on Indus water system. In Pakistan, there are loftyplateaus to the north and Arabian Sea in the south, while the interior portion is covered with plateaus or agriculture plains. For such a region, any attempt to monitor/analyze climatic data requires some more specific details. A statistical software “SDSM” is utilized for downscaling daily temperature data of Pakistan and the results generated are compared with the output of a recommended model “ECHAM5”. After analysis, it revealed that comparatively SDSM produced much better results. The outputs from both the approaches were correlated with the observed data;SDSM-observed gave values for correlation coefficient R2 in the range of 81% - 94% whereas ECHAM5-observed produced 73% - 87% for different meteorological stations of Pakistan. On the basis of this study, SDSM can be recommended for future scenario generation of temperature data of Pakistan as well.
文摘In this paper, a novel neural network is proposed based on quantum rotation gate and controlled- NOT gate. Both the input layer and the hide layer are quantum-inspired neurons. The input is given by qubits, and the output is the probability of qubit in the state . By employing the gradient descent method, a training algorithm is introduced. The experimental results show that this model is superior to the common BP networks.
基金This work was supported by the sponsorship of the National Science Foundation for Distinguished Young Scholars of China (51125032), the sponsorship of the National Key Research and Development Program of China (2016YFC0204500), and the National Natural Science Foundation of China (51608203).
文摘The environmentally friendly and resourceful utilization of organic waste liquid is one of the frontiers of environmental engineering. With the increasing demand for chemicals, the problem of organic waste liq- uid with a high concentration of inorganic pollutants in the processing of petroleum, coal, and natural gas is becoming more serious. In this study, the high-speed self-rotation and flipping of particles in a three- dimensional cyclonic turbulent field was examined using a synchronous high-speed camera technique; the self-rotation speed was found to reach 2000-6000 rad.s 1. Based on these findings, a cyclonic gas- stripping method for the removal of organic matter from the pores of particles was invented. A techno- logical process was developed to recover organic matter from waste liquid by cyclonic gas stripping and classifying inorganic particles by means of airflow acceleration classification. A demonstration device was built in Sinopec's first ebullated-bed hydro-treatment unit for residual oil. Compared with the T-STAR fixed-bed gas-stripping technology designed in the United States, the maximum liquid-removal effi- ciency of the catalyst particles in this new process is 44.9% greater at the same temperature, and the time required to realize 95% liquid-removal efficiency is decreased from 1956.5 to 8.4 s. In addition, we achieved the classification and reuse of the catalyst particles contained in waste liquid according to their activity. A proposal to use this new technology was put forward regarding the control of organic waste liquid and the classification recovery of inorganic particles in an ebullated-bed hydro-treatment process for residual oil with a processing capacity of 2×106 t.a^1. It is estimated that the use of this new tech- nology will lead to the recovery of 3100 t.a 1 of diesel fuel and 647 t.a^1 of high-activity catalyst; in addi- tion, it will reduce the consumption of fresh catalyst by 518 t.a^1. The direct economic benefits of this process will be as high as 37.28 million CNY per year.
基金supported by the National Natural Science Foundation of China (Grant Nos.42005054,41975070)China Postdoctoral Science Foundation (Grant No.2020M681154)。
文摘Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In this study,we perform a theoretical study to investigate the relative effects of initial condition and model errors on local prediction lead time of given states in the Lorenz model.Using the backward nonlinear local Lyapunov exponent method,the prediction lead time,also called local backward predictability limit(LBPL),of given states induced by the two types of errors can be quantitatively estimated.Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of states.On an individual circular orbit,the LBPLs are roughly the same,whereas they are different on different orbits.The spatial distributions of LBPLs show that the relative effects of initial condition and model errors on local backward predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes.When the error magnitude is fixed,the differences between the LBPLs vary with the locations of given states.The larger differences are mainly located on the inner trajectories of regimes.When the error magnitudes are different,the dissimilarities in LBPLs are diverse for the same given state.