The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenatio...The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion.Moreover,the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.展开更多
An efficient coal de-capacity quota allocation scheme is key for accelerating China's coal supplyside structure reform.This paper allocates the coal de-capacity quota from the perspective of efficiency to seek the...An efficient coal de-capacity quota allocation scheme is key for accelerating China's coal supplyside structure reform.This paper allocates the coal de-capacity quota from the perspective of efficiency to seek the optimal capacity allocation in each Chinese province.First,we estimate the coal capacity of 24 coal-producing provinces based on boundary production function model.According to the actual coal overcapacity in each province,we initially allocate the coal decapacity quota of reducing 0.8 billion tons among them.Then,we optimize the initial allocation plan by using the zero-sum gains data envelopment model(ZSG-DEA)considering backward coal capacity,coal economic output,and coal resource endowment of each province.The results indicate that:First,there is coal overcapacity all over China,and there are obvious differences among the provinces.Second,the optimal allocation results show that the large coal producing provinces,including Shanxi,Inter Mongolia,Shaanxi,etc.,need to undertake most of the coal decapacity tasks,while the old coal producing provinces in northeast and west China should undertake a heavier burden of coal de-capacity.Third,the“one-size fits-all”approach burdens the small coal producing provinces with reducing coal capacity,leading to a general low enthusiasm for coal de-capacity in these regions.展开更多
As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditio...As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditional synchronization technology based C/S mode has such deficiencies as insufficient amount of transmitting data and bad Real-time efficiency. It has become increasingly unable to meet the needs of future development. In this paper, we proposed and designed a new method and system by separating control with transmission to synchronize data to ensure Real-time data and improve efficiency.展开更多
Objective: The aim was to detect the expression of PR and CD146 in paraf-fin-embedded tissue sections of endometrioid adenocarcinoma by using QDs double-labeling immunofluorescence, and evaluate the applied value of Q...Objective: The aim was to detect the expression of PR and CD146 in paraf-fin-embedded tissue sections of endometrioid adenocarcinoma by using QDs double-labeling immunofluorescence, and evaluate the applied value of QDs double-labeling immunofluorescence in endometrioid adenocarcinoma. Methods: To detect the expression of PR and CD146 on 140 cases of paraffin-embedded tissue sections of endometrioid adenocarcinoma by using QDS double-labeling immunofluorescence. Results: The co-expression of PR and CD146 in the endometrioid adenocarcinoma can be detected by QDs double-labeling immunofluorescence, and there was no correlation between them (P > 0.05). Conclusion: QDs double-labeling immunofluorescence can detect the localization and co-expression of PR and CD146 in the endometrioid adenocarcinoma.展开更多
Refractory lithospheric deep roots are the cornerstone for the prolonged stability of cratons and mantle xenoliths are normally the key targets for study on the evolution of such deep roots. In regions with few mantle...Refractory lithospheric deep roots are the cornerstone for the prolonged stability of cratons and mantle xenoliths are normally the key targets for study on the evolution of such deep roots. In regions with few mantle xenoliths, the basalts enriched in radiogenic isotopic compositions due to marked lithospheric mantle contribution are crucial to unmask the lithospheric mantle evolution based on a comprehensive study involving petrology, geochemistry and thermodynamic modelling. Here, the Early Cretaceous basalts from the northwest North China Craton with few mantle xenoliths are taken as an example to show the significance of enriched basalts on the study of lithospheric mantle. These basalts are characterized by high silica and alkali contents(SiO_(2)=45.8–59.8 wt.%, K_(2)O+Na_(2)O=4.81–9.88 wt.%), arc-type trace-element patterns and enriched radiogenic isotope compositions(e.g., ε_(Nd)=-2.64–-12.88,^(87)Sr/^(86)Sr=0.7063–0.7093). The TiO_(2) and FeO(total) contents are higher than those of natural and experimental melts from refractory mantle peridotite but comparable to those of partial melts of fertile mantle rocks.The high contents of fluid-loving elements(e.g., Rb and Ba) suggest source metasomatism by aqueous fluids. Combined with thermodynamic modelling and regional tectonic history, these enriched basalts likely record simultaneous decompression melting of asthenosphere and low-extent melting of thin and fertile lithospheric mantle fluxed by aqueous fluids from the subducted Paleo-Asian oceanic slab. The newly unmasked lithospheric mantle under the western NCC contrasts with the coeval thick and refractory one supporting the eastern NCC, and highlights that the craton destruction, especially the loss of its ancient refractory mantle root, should take place in a diachronous manner related to the craton-girded subduction episodes. Our study illustrates the potential of enriched basalts to recover the nature and evolution of mantle lithosphere beneath craton margins and associated tectonic histories.展开更多
Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth's lay...Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth's layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.展开更多
The Central Qilian Block is a Precambrian block in the Qilian Orogen,which has long drawn international attention for the study of orogeny and continental dynamics.The Huangyuan Group in the Datong area is one of the ...The Central Qilian Block is a Precambrian block in the Qilian Orogen,which has long drawn international attention for the study of orogeny and continental dynamics.The Huangyuan Group in the Datong area is one of the Precambrian metamorphic basement units in the Central Qilian Block and reflects metamorphism in the Barrovian garnet zone and sillimanite zone from south to north.Based on detailed fieldwork,this study presents a systematic study of petrography,mineral chemistry and phase equilibria of schists and gneisses from the two metamorphic zones.The garnet metamorphic zone is composed of micaschist,garnet-bearing micaschist and felsic leptynite,with interlayered plagioclase amphibolite.The sillimanite metamorphic zone consists of garnet-bearing biotite micaschist,sillimanite-bearing biotite-plagioclase gneiss and felsic leptynite.Garnet from the garnet metamorphic zone shows growth zoning with increasing almandine and pyrope and decreasing spessartine from core to rim.Garnet from the sillimanite metamorphic zone is almost homogeneous.Towards the outer rim,the contents of almandine and pyrope slightly decrease and grossular slightly increase.Biotite in both metamorphic zones is ferro-biotite.Plagioclase is oligoclase in garnet metamorphic zone and andesine in sillimanite metamorphic zone.Phase equilibrium modeling of a sample from garnet metamorphic zone resulted in a clockwise P-T path with a prograde stage(4.5–5.0 kbar,520–530℃),a peak P stage(9.8–10.2 kbar,560–570℃),a stage of thermal relaxation(8.0–8.5 kbar,580–590℃)and finally a retrograde stage(6.8–7.0 kbar,560–580℃).Thermodynamic modeling of a sample from the sillimanite metamorphic zone indicates a prograde stage(5.5–6.0 kbar,540–550℃)and a peak stage(7.8–8.5 kbar,660–690℃).The results indicate that the Huangyuan Group experienced medium-pressure amphibolite-facies metamorphism,which resulted from continental-continental collision between the Qaidam Block and the Central Qilian Block.展开更多
The sufficient utilization of Mott-Schottky effect for boosting alkaline hydrogen evolution reaction(HER)depends upon scale minimizing of interface components and exposure maximizing of Mott-Schottky interface.Here,a ...The sufficient utilization of Mott-Schottky effect for boosting alkaline hydrogen evolution reaction(HER)depends upon scale minimizing of interface components and exposure maximizing of Mott-Schottky interface.Here,a self-standing porous tubular Mott-Schottky electrocatalyst is constructed by a self-template etching strategy,where amorphous WO_(x)(a-WO_(x))nano-matrix connects Co nanoparticles.This novel“Janus”electrocatalyst maximizes the Mott-Schottky effect by not only providing a highly exposed micro interface,but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process.Experimental findings and theoretical calculations reveal that Co/a-WO_(x)Mott-Schottky heterointerface triggers the electron redistribution and a build-in electric field,which can not only optimize the adsorption energy of the reaction intermediates,but also facilitate the charge transfer.Thus,Co/a-WO_(x)requires an overpotential of only 36.3 mV at 10 mA·cm^(−2)and shows a small Tafel slope of 53.9 mV·dec^(−1)as well as an excellent 200-h long-term stability.This work provides a novel design strategy for maximizing the Mott-Schottky effect on promoting alkaline HER.展开更多
The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a...The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a systematic study of petrography, mineral chemistry and phase equilibria of garnet amphibolites from the Hualong Group, which represents the Precambrian basement in the southern accretionary belt of the Qilian Orogen. The garnet amphibolites mainly consist of amphibole, plagioclase, garnet and quartz, with minor pyroxene, biotite and ilmenite. A peak stage of upper amphibolite facies to low-temperature granulite facies metamorphism and retrograde metamorphism in the amphibolite facies affected the samples. Garnet has a homogeneous composition of Alm66-71Grs14-17Prp9_12Sps3-s, amphibole is ferro-hornblende, biotite belongs to the ferro-biotite species and pyroxene is dominated by orthopyroxene with few clinopyroxene. Pseudosection modeling of the garnet amphibolite samples indicates clockwise P-T paths. The samples witness peak metamorphism at conditions of -4.9-6.3 kbar and -755-820 ℃ in the upper amphibolite facies to low- temperature granulite facies, and retrograde cooling and decompression at conditions of-2.5-3.1 kbar and -325-545 ℃. It is inferred that peak metamorphism with high temperature and low pressure occurred at ca. 450 Ma during northward subduction of the South Qilian oceanic crust beneath the central Qilian Block. When continental collision occurred between the central Qilian and the Qaidam blocks, the Hualong Block was aecreted onto the South Qilian accretionary complex and experienced amphibolite facies retrograde metamorphism at ca. 440 Ma.展开更多
The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~17...The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~170 Ma);(2) Middle Jurassic to Early Cretaceous(160-140 Ma);(3) Early Cretaceous to Cenozoic(140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period,the subduction and closure of the PaleoAsian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression(Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range pro vince by the Mesozoic magmatic plutons and NE-SW trending faults.With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle(SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weakzones(i.e.,cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted(~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by(1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling.Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment;(2)then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton,or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.展开更多
Determination of the physical and chemical structures of the inaccessible continental lithosphere by comprehensive geophysical and geochemical studies can provide valuable information on its formation and evolution.Ex...Determination of the physical and chemical structures of the inaccessible continental lithosphere by comprehensive geophysical and geochemical studies can provide valuable information on its formation and evolution.Extensive studies from various disciplines have revealed complex lithospheric modification of the North China Craton(NCC),but less attention has been paid to an integrated study from different fields.Here we provide an integrated constraint on the lithospheric mantle structure of the NCC by comprehensive semiology,gravity and thermal studies with xenolith data involving depth(levels in the lithosphere),property(chemical and physical),and timing(formation and reworking ages).Our results suggest that the NCC has a relatively heterogeneous lithospheric mantle.Its margins and internal weak zones,especially in the eastern NCC,are generally underlain by the fertile,weakly metasomatized mantle with generally young formation ages.In contrast,its core tends to preserve the refractory,strongly metasomatized mantle with ages roughly coupled to the overlying Archean crust.Such a lithospheric structure shows the preferential modification of the lithospheric mantle in the eastern NCC and in the peripheral regions of the western NCC.The interior of the craton,especially most of the western NCC,remains stable and has been weakly modified.展开更多
The orogenic peridotites can be subdivided into crust-and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crys...The orogenic peridotites can be subdivided into crust-and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crystallized from ultramafic-mafic magmas in deep continental crust, an early mantle-crust interaction, prior to subduction. The mantle-derived orogenic peridotites are originated from subcontinental lithospheric mantle(SCLM) wedge and other mantle domains, and are later involved in the subduction channel and orogenic system. The mantle-derived peridotites usually record complex metasomatism, ultra-high pressure(UHP) metamorphism and mantle-crust interaction during the orogenic processes. Zircons are rarely found in orogenic peridotites. These zircons in orogenic peridotites are generally formed during metasomatism, they can be divided into old zircons(mainly the cores of residual magmatic and recrystallized) and newly grown zircons. Three key factors for zircon formation in orogenic peridotites are that:(1) zircon has strong crystallization ability, and Zr is easier to exchange Si in zircon crystal structure than other elements in the mantle;(2) metamorphic destruction of Zr-bearing minerals and precipitation of intergranular melts during the high-grade metamorphism can nucleate zircon under sub-solidus conditions;(3) the melts/fluids released from the subducted crust can metasomatize the mantle wedge to form zircons. In-situ studies on zircons and zircon inclusions enclosed in mantle minerals indicate that zircon can be an ideal indicator for mantle-crust interaction in subduction zones. The inclusions in zircons and Hf-O isotope of zircons are effective to reflect the composition of the melts/fluids, source properties, and the physical and chemical conditions. Dating of the zircons has been widely used in the studies of lithospheric evolution and crust-mantle interaction. During the complex processes of plate convergence, the orogenic peridotites can be subjected to the melt/fluid metasomatism, modifying the mineral and elemental compositions of peridotites. Thus, zircon is very useful to unravel the history of specific lithospheric mantle and the relationship between continental cratonic cores and their margins.展开更多
Zircon is a common accessory mineral in various rocks,especially in the crustal ones.It is the best mineral for U-Pb dating.Meanwhile,trace elements and isotopes of the mineral can also provide much information concer...Zircon is a common accessory mineral in various rocks,especially in the crustal ones.It is the best mineral for U-Pb dating.Meanwhile,trace elements and isotopes of the mineral can also provide much information concerning the formation and evolution of rocks.There are a growing number of reports of zircon existing in mantle peridotite.However,it is generally considered that zircon is unlikely crystallized in ultrabasic rocks due to SiO_(2)-unsaturation.In this paper,the SiO_(2) activity and zircon/baddeleyite transition curve at different conditions were calculated through thermodynamic phase equilibrium modeling,to reveal the main factors affecting the SiO_(2) activity and the stability of zircon/baddeleyite in ultrabasic and basic rocks,especially in mantle peridotite.These results provide a thermodynamic basis for interpreting the genesis and significance of zircon in mantle rocks.That is,the SiO_(2) activity is mainly controlled by stable mineral assemblages and temperature-pressure conditions.The orthopyroxene+olivine assemblage in peridotite as an effective buffer restricts the SiO_(2) activity in a relatively high range with a small variation.The upper temperature limit of zircon can reach more than 1500℃ with this mineral assemblage.During the low-temperature serpentinization of peridotite,the replacement of olivine and pyroxene by serpentine can result in a significant decrease of SiO_(2) activity,and baddeleyite can be stabilized at<530℃ and<2.7 GPa.When peridotite is strongly metasomatized by the SiO_(2)-bearing fluid,the addition of SiO_(2) can increase its activity and make zircon stable at low temperatures.The SiO_(2) activity in ultrabasic-basic rocks is not only positively correlated with the SiO_(2) content but also negatively correlated with the Ca and Na contents of rocks.This is because Ca and Na preferentially combine with Si and Al to form Si-rich minerals,such as clinopyroxene and feldspar.This process will consume excessive SiO_(2),decreasing the SiO_(2) activity.This may be the reason why zircon can be found in ultrabasic rocks,while baddeleyite can exist in some basic and alkaline rocks.The thermodynamic modeling can also reasonably explain the mutual transformation between zircon and baddeleyite in ultrabasic-basic rocks.Our results indicate that zircon can exist stably in mantle peridotite in a wide range of temperature-pressure conditions and its formation is related to melt/fluid metasomatism.That is,the presence of zircon in mantle peridotite is an important information carrier of crust-mantle interaction for deep material cycling.展开更多
基金financial support from National Natural Science Foundation of China(41802200)Natural Science Foundation of Hubei Province(2020CFB863)+5 种基金China Scholarship Council(201906415017)China University of Geosciences Wuhan(CUGQY1938)the partial support through JSPS KAKENHI Grant Numbers JP15H05831 and 20KK0081a PhD scholarship support from Niigata Universityfinancial support from National Natural Science Foundation of China(41520104003)China University of Geosciences Wuhan(CUGCJ1709)。
文摘The Lomagundi(-Jatuli)event,characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago,is pivotal in investigating the causes and consequences of great oxygenation event,inventory and sequestration of carbon on the Earth’s surface,evolution of life,and more profoundly tectonic control on Earth’s environment.However,the reasons that caused the isotopic excursion are not resolved yet.Herein,we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex,South China Craton.The δ^(13)C_(V-PDB) values for meta-carbonate rocks show positive values in the range from+5.5‰to+11.6‰,whereas the δ^(13)C_(V-PDB) values of associated graphite deposits range from-25.8‰to-9.5‰.Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average _(207)Pb/_(206)Pb age of 2001.3±9.5 Ma,with correspondingε_(Hf)(t)range from-7.05 to-3.16,comparable to the values of local 2.9–2.6 Ga basement rocks.Geochemical characteristics of meta-carbonate rocks,such as their rare earth element patterns and the trace element parameters of La,Ce,Eu,and Gd anomalies and Y/Ho ratio,suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon.The extensive graphite deposits from Kongling Complex in South China Craton,their equivalents in the North China Craton and elsewhere across the globe prove that the burial of ^(12)C-enriched organic carbon has eventually resulted in the global enrichment of ^(13)C in the atmospheric CO_(2),which is recorded in the marine carbonate rocks.Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure.Hence,the observed global shift could be directly related to the continent collision event in greater China,thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion.Moreover,the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.
基金The authors are grateful to the financial support provided by the National Natural Science Foundation of China[Grant number:71471042].
文摘An efficient coal de-capacity quota allocation scheme is key for accelerating China's coal supplyside structure reform.This paper allocates the coal de-capacity quota from the perspective of efficiency to seek the optimal capacity allocation in each Chinese province.First,we estimate the coal capacity of 24 coal-producing provinces based on boundary production function model.According to the actual coal overcapacity in each province,we initially allocate the coal decapacity quota of reducing 0.8 billion tons among them.Then,we optimize the initial allocation plan by using the zero-sum gains data envelopment model(ZSG-DEA)considering backward coal capacity,coal economic output,and coal resource endowment of each province.The results indicate that:First,there is coal overcapacity all over China,and there are obvious differences among the provinces.Second,the optimal allocation results show that the large coal producing provinces,including Shanxi,Inter Mongolia,Shaanxi,etc.,need to undertake most of the coal decapacity tasks,while the old coal producing provinces in northeast and west China should undertake a heavier burden of coal de-capacity.Third,the“one-size fits-all”approach burdens the small coal producing provinces with reducing coal capacity,leading to a general low enthusiasm for coal de-capacity in these regions.
文摘As the rapid development of Wireless Communications and the popularity of the Intelligent Terminal, data synchronization has been a social focus, meanwhile, user terminal devices are increasingly diversified, traditional synchronization technology based C/S mode has such deficiencies as insufficient amount of transmitting data and bad Real-time efficiency. It has become increasingly unable to meet the needs of future development. In this paper, we proposed and designed a new method and system by separating control with transmission to synchronize data to ensure Real-time data and improve efficiency.
文摘Objective: The aim was to detect the expression of PR and CD146 in paraf-fin-embedded tissue sections of endometrioid adenocarcinoma by using QDs double-labeling immunofluorescence, and evaluate the applied value of QDs double-labeling immunofluorescence in endometrioid adenocarcinoma. Methods: To detect the expression of PR and CD146 on 140 cases of paraffin-embedded tissue sections of endometrioid adenocarcinoma by using QDS double-labeling immunofluorescence. Results: The co-expression of PR and CD146 in the endometrioid adenocarcinoma can be detected by QDs double-labeling immunofluorescence, and there was no correlation between them (P > 0.05). Conclusion: QDs double-labeling immunofluorescence can detect the localization and co-expression of PR and CD146 in the endometrioid adenocarcinoma.
基金supported by the National Natural Science Foundation of China (Grant Nos.42272053 and 41930215)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (Grant No.MSFGPMR2022-6)。
文摘Refractory lithospheric deep roots are the cornerstone for the prolonged stability of cratons and mantle xenoliths are normally the key targets for study on the evolution of such deep roots. In regions with few mantle xenoliths, the basalts enriched in radiogenic isotopic compositions due to marked lithospheric mantle contribution are crucial to unmask the lithospheric mantle evolution based on a comprehensive study involving petrology, geochemistry and thermodynamic modelling. Here, the Early Cretaceous basalts from the northwest North China Craton with few mantle xenoliths are taken as an example to show the significance of enriched basalts on the study of lithospheric mantle. These basalts are characterized by high silica and alkali contents(SiO_(2)=45.8–59.8 wt.%, K_(2)O+Na_(2)O=4.81–9.88 wt.%), arc-type trace-element patterns and enriched radiogenic isotope compositions(e.g., ε_(Nd)=-2.64–-12.88,^(87)Sr/^(86)Sr=0.7063–0.7093). The TiO_(2) and FeO(total) contents are higher than those of natural and experimental melts from refractory mantle peridotite but comparable to those of partial melts of fertile mantle rocks.The high contents of fluid-loving elements(e.g., Rb and Ba) suggest source metasomatism by aqueous fluids. Combined with thermodynamic modelling and regional tectonic history, these enriched basalts likely record simultaneous decompression melting of asthenosphere and low-extent melting of thin and fertile lithospheric mantle fluxed by aqueous fluids from the subducted Paleo-Asian oceanic slab. The newly unmasked lithospheric mantle under the western NCC contrasts with the coeval thick and refractory one supporting the eastern NCC, and highlights that the craton destruction, especially the loss of its ancient refractory mantle root, should take place in a diachronous manner related to the craton-girded subduction episodes. Our study illustrates the potential of enriched basalts to recover the nature and evolution of mantle lithosphere beneath craton margins and associated tectonic histories.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41520104003 & 41873032)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG180604)
文摘Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth's layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.
基金funded by the National Natural Science Foundation of China (No. 41520104003)the National Key R & D Program of China (No. 2016YFC0600403)+1 种基金the China Geological Survey (No. DD20160201)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Nos. CUGL170404,CUG160232)
文摘The Central Qilian Block is a Precambrian block in the Qilian Orogen,which has long drawn international attention for the study of orogeny and continental dynamics.The Huangyuan Group in the Datong area is one of the Precambrian metamorphic basement units in the Central Qilian Block and reflects metamorphism in the Barrovian garnet zone and sillimanite zone from south to north.Based on detailed fieldwork,this study presents a systematic study of petrography,mineral chemistry and phase equilibria of schists and gneisses from the two metamorphic zones.The garnet metamorphic zone is composed of micaschist,garnet-bearing micaschist and felsic leptynite,with interlayered plagioclase amphibolite.The sillimanite metamorphic zone consists of garnet-bearing biotite micaschist,sillimanite-bearing biotite-plagioclase gneiss and felsic leptynite.Garnet from the garnet metamorphic zone shows growth zoning with increasing almandine and pyrope and decreasing spessartine from core to rim.Garnet from the sillimanite metamorphic zone is almost homogeneous.Towards the outer rim,the contents of almandine and pyrope slightly decrease and grossular slightly increase.Biotite in both metamorphic zones is ferro-biotite.Plagioclase is oligoclase in garnet metamorphic zone and andesine in sillimanite metamorphic zone.Phase equilibrium modeling of a sample from garnet metamorphic zone resulted in a clockwise P-T path with a prograde stage(4.5–5.0 kbar,520–530℃),a peak P stage(9.8–10.2 kbar,560–570℃),a stage of thermal relaxation(8.0–8.5 kbar,580–590℃)and finally a retrograde stage(6.8–7.0 kbar,560–580℃).Thermodynamic modeling of a sample from the sillimanite metamorphic zone indicates a prograde stage(5.5–6.0 kbar,540–550℃)and a peak stage(7.8–8.5 kbar,660–690℃).The results indicate that the Huangyuan Group experienced medium-pressure amphibolite-facies metamorphism,which resulted from continental-continental collision between the Qaidam Block and the Central Qilian Block.
基金supported by the National Natural Science Foundation of China(Nos.51972349,U1801255,and 51972350)the National Natural Science Foundation of Guangdong Province(No.2022A1515011596).T。
文摘The sufficient utilization of Mott-Schottky effect for boosting alkaline hydrogen evolution reaction(HER)depends upon scale minimizing of interface components and exposure maximizing of Mott-Schottky interface.Here,a self-standing porous tubular Mott-Schottky electrocatalyst is constructed by a self-template etching strategy,where amorphous WO_(x)(a-WO_(x))nano-matrix connects Co nanoparticles.This novel“Janus”electrocatalyst maximizes the Mott-Schottky effect by not only providing a highly exposed micro interface,but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process.Experimental findings and theoretical calculations reveal that Co/a-WO_(x)Mott-Schottky heterointerface triggers the electron redistribution and a build-in electric field,which can not only optimize the adsorption energy of the reaction intermediates,but also facilitate the charge transfer.Thus,Co/a-WO_(x)requires an overpotential of only 36.3 mV at 10 mA·cm^(−2)and shows a small Tafel slope of 53.9 mV·dec^(−1)as well as an excellent 200-h long-term stability.This work provides a novel design strategy for maximizing the Mott-Schottky effect on promoting alkaline HER.
基金funded by the National Natural Science Foundation of China (No. 41520104003)the National Key R & D Program of China (No. 2016YFC0600403)+1 种基金the China Geological Survey (No. DD20160201)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL170404, CUG160232)
文摘The Qilian Orogen marks the junction of the North China, South China and Tarim cratons. The mechanism of continental growth during the formation of the orogen remains unclear. Based on detailed fieldwork, we present a systematic study of petrography, mineral chemistry and phase equilibria of garnet amphibolites from the Hualong Group, which represents the Precambrian basement in the southern accretionary belt of the Qilian Orogen. The garnet amphibolites mainly consist of amphibole, plagioclase, garnet and quartz, with minor pyroxene, biotite and ilmenite. A peak stage of upper amphibolite facies to low-temperature granulite facies metamorphism and retrograde metamorphism in the amphibolite facies affected the samples. Garnet has a homogeneous composition of Alm66-71Grs14-17Prp9_12Sps3-s, amphibole is ferro-hornblende, biotite belongs to the ferro-biotite species and pyroxene is dominated by orthopyroxene with few clinopyroxene. Pseudosection modeling of the garnet amphibolite samples indicates clockwise P-T paths. The samples witness peak metamorphism at conditions of -4.9-6.3 kbar and -755-820 ℃ in the upper amphibolite facies to low- temperature granulite facies, and retrograde cooling and decompression at conditions of-2.5-3.1 kbar and -325-545 ℃. It is inferred that peak metamorphism with high temperature and low pressure occurred at ca. 450 Ma during northward subduction of the South Qilian oceanic crust beneath the central Qilian Block. When continental collision occurred between the central Qilian and the Qaidam blocks, the Hualong Block was aecreted onto the South Qilian accretionary complex and experienced amphibolite facies retrograde metamorphism at ca. 440 Ma.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0600403)the National Natural Science Foundation of China(Grant No.91214204)
文摘The North China Craton(NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods:(1) Late Paleozoic to Early Jurassic(~170 Ma);(2) Middle Jurassic to Early Cretaceous(160-140 Ma);(3) Early Cretaceous to Cenozoic(140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period,the subduction and closure of the PaleoAsian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression(Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range pro vince by the Mesozoic magmatic plutons and NE-SW trending faults.With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle(SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weakzones(i.e.,cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted(~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by(1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling.Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment;(2)then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton,or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.
基金supported by the National Natural Science Foundation of China(Grant No.41930215)the National Key R&D Program of China(Grant No.2016YFC0600403)。
文摘Determination of the physical and chemical structures of the inaccessible continental lithosphere by comprehensive geophysical and geochemical studies can provide valuable information on its formation and evolution.Extensive studies from various disciplines have revealed complex lithospheric modification of the North China Craton(NCC),but less attention has been paid to an integrated study from different fields.Here we provide an integrated constraint on the lithospheric mantle structure of the NCC by comprehensive semiology,gravity and thermal studies with xenolith data involving depth(levels in the lithosphere),property(chemical and physical),and timing(formation and reworking ages).Our results suggest that the NCC has a relatively heterogeneous lithospheric mantle.Its margins and internal weak zones,especially in the eastern NCC,are generally underlain by the fertile,weakly metasomatized mantle with generally young formation ages.In contrast,its core tends to preserve the refractory,strongly metasomatized mantle with ages roughly coupled to the overlying Archean crust.Such a lithospheric structure shows the preferential modification of the lithospheric mantle in the eastern NCC and in the peripheral regions of the western NCC.The interior of the craton,especially most of the western NCC,remains stable and has been weakly modified.
基金support from the National Natural Science Foundation of China (Nos. 41520104003 and 41873023)the DREAM project of the MOST (No. 2016YFC0600403)
文摘The orogenic peridotites can be subdivided into crust-and mantle-derived types. They record complex geological processes in subduction and collision zones. The crust-derived peridotites are derived from cumulates crystallized from ultramafic-mafic magmas in deep continental crust, an early mantle-crust interaction, prior to subduction. The mantle-derived orogenic peridotites are originated from subcontinental lithospheric mantle(SCLM) wedge and other mantle domains, and are later involved in the subduction channel and orogenic system. The mantle-derived peridotites usually record complex metasomatism, ultra-high pressure(UHP) metamorphism and mantle-crust interaction during the orogenic processes. Zircons are rarely found in orogenic peridotites. These zircons in orogenic peridotites are generally formed during metasomatism, they can be divided into old zircons(mainly the cores of residual magmatic and recrystallized) and newly grown zircons. Three key factors for zircon formation in orogenic peridotites are that:(1) zircon has strong crystallization ability, and Zr is easier to exchange Si in zircon crystal structure than other elements in the mantle;(2) metamorphic destruction of Zr-bearing minerals and precipitation of intergranular melts during the high-grade metamorphism can nucleate zircon under sub-solidus conditions;(3) the melts/fluids released from the subducted crust can metasomatize the mantle wedge to form zircons. In-situ studies on zircons and zircon inclusions enclosed in mantle minerals indicate that zircon can be an ideal indicator for mantle-crust interaction in subduction zones. The inclusions in zircons and Hf-O isotope of zircons are effective to reflect the composition of the melts/fluids, source properties, and the physical and chemical conditions. Dating of the zircons has been widely used in the studies of lithospheric evolution and crust-mantle interaction. During the complex processes of plate convergence, the orogenic peridotites can be subjected to the melt/fluid metasomatism, modifying the mineral and elemental compositions of peridotites. Thus, zircon is very useful to unravel the history of specific lithospheric mantle and the relationship between continental cratonic cores and their margins.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41972067&41930215)the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources(Grant No.J1901-11).
文摘Zircon is a common accessory mineral in various rocks,especially in the crustal ones.It is the best mineral for U-Pb dating.Meanwhile,trace elements and isotopes of the mineral can also provide much information concerning the formation and evolution of rocks.There are a growing number of reports of zircon existing in mantle peridotite.However,it is generally considered that zircon is unlikely crystallized in ultrabasic rocks due to SiO_(2)-unsaturation.In this paper,the SiO_(2) activity and zircon/baddeleyite transition curve at different conditions were calculated through thermodynamic phase equilibrium modeling,to reveal the main factors affecting the SiO_(2) activity and the stability of zircon/baddeleyite in ultrabasic and basic rocks,especially in mantle peridotite.These results provide a thermodynamic basis for interpreting the genesis and significance of zircon in mantle rocks.That is,the SiO_(2) activity is mainly controlled by stable mineral assemblages and temperature-pressure conditions.The orthopyroxene+olivine assemblage in peridotite as an effective buffer restricts the SiO_(2) activity in a relatively high range with a small variation.The upper temperature limit of zircon can reach more than 1500℃ with this mineral assemblage.During the low-temperature serpentinization of peridotite,the replacement of olivine and pyroxene by serpentine can result in a significant decrease of SiO_(2) activity,and baddeleyite can be stabilized at<530℃ and<2.7 GPa.When peridotite is strongly metasomatized by the SiO_(2)-bearing fluid,the addition of SiO_(2) can increase its activity and make zircon stable at low temperatures.The SiO_(2) activity in ultrabasic-basic rocks is not only positively correlated with the SiO_(2) content but also negatively correlated with the Ca and Na contents of rocks.This is because Ca and Na preferentially combine with Si and Al to form Si-rich minerals,such as clinopyroxene and feldspar.This process will consume excessive SiO_(2),decreasing the SiO_(2) activity.This may be the reason why zircon can be found in ultrabasic rocks,while baddeleyite can exist in some basic and alkaline rocks.The thermodynamic modeling can also reasonably explain the mutual transformation between zircon and baddeleyite in ultrabasic-basic rocks.Our results indicate that zircon can exist stably in mantle peridotite in a wide range of temperature-pressure conditions and its formation is related to melt/fluid metasomatism.That is,the presence of zircon in mantle peridotite is an important information carrier of crust-mantle interaction for deep material cycling.