期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Abstraction and operator characterization of fractal ladder viscoelastic hyper-cell for ligaments and tendons 被引量:2
1
作者 jianqiao guo Yajun YIN Gexue REN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第10期1429-1448,共20页
This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-... This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-cell (FLHC), is abstracted from the micro/nano-structure of ligaments and tendons (LTs). Its constitutive operator is derived by the Heaviside operational calculus, which is of intrinsic fractional order. In terms of this operator, the long-term viscoelastic relaxation of bio-fibres arising from the fractal ladder topology is expounded. In addition, the fractional-order viscoelastic constitutive equation is obtained based on the FLHC of LTs, and its results are consistent with those of available human knee and spinal LT relaxation experiments. Results on the constitutive equation of FLHCs are formulated into two propositions. The multidisciplinary invariance and implications from the fractal ladder pattern of bio-fibres are also discussed. 展开更多
关键词 LIGAMENT and TENDON (LT) FRACTAL LADDER topology operator method stress relaxation
下载PDF
A forward-inverse dynamics modeling framework for human musculoskeletal multibody system 被引量:2
2
作者 Xinyue Wang jianqiao guo Qiang Tian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第11期101-114,共14页
Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and can... Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal disorders.However,conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear muscle behaviors.Meanwhile,the forward dynamics approach is computationally demanding and only suited for relatively simple tasks.This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction force,tendon elasticity,and muscle recruitment optimization.A hybrid motion capture system,which combines the marker-based infrared device and markerless tracking through deep convolutional neural networks,was developed to track lower limb movements.The foot-ground reaction forces were determined by a contact model for soft materials,and its parameters were estimated using a two-step optimization method.The muscle recruitment problem was first resolved via a static optimization algorithm,and the obtained muscle activations were used as initial values for further simulation.A torque tracking procedure was then performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.The proposed approach was validated against the electromyography measurements of a healthy subject during gait.The simulation framework provides a robust way of predicting joint torques,musculotendon forces,and muscle activations,which can be beneficial for understanding the biomechanics of normal and pathological gait. 展开更多
关键词 Multibody dynamics Musculoskeletal modeling GAIT Forward-inverse dynamics Musculotendon dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部