期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparative transcriptome analysis provides insights into the molecular mechanism of the anti-nematode role of Arachis hypogaea(Fabales:Fabaceae)against Meloidogyne incognita(Tylenchida:Heteroderidae)
1
作者 XUEJIN YANG YUANYUAN ZHOU +4 位作者 XINYI PENG XIAOHONG FU jianqing ma JIANFENG LIU DANDAN CAO 《BIOCELL》 SCIE 2023年第9期2101-2113,共13页
Background:Plant root-knot nematode(RKN)disease is a serious threat to agricultural production across the world.Meloidogyne incognita is the most prominent pathogen to the vegetables and cash crops cultivated.Arachis ... Background:Plant root-knot nematode(RKN)disease is a serious threat to agricultural production across the world.Meloidogyne incognita is the most prominent pathogen to the vegetables and cash crops cultivated.Arachis hypogaea can effectively inhibit M.incognita,but the underlying defense mechanism is still unclear.Methods:In our study,the chemotaxis and infestation of the second-stage juveniles(J2s)of M.incognita to A.hypogaea root tips were observed by the Pluronic F-127 system and stained with sodium hypochlorite acid fuchsin,respectively.The transcriptome data of A.hypogaea roots with non-infected or infected by J2s were analyzed.Results:The J2s could approach and infect inside of A.hypogaea root tips,and the chemotactic migration rate and infestation rate were 20.72%and 22.50%,respectively.Differential gene expression and pathway enrichment analyses revealed ubiquinone and other terpenoid-quinone biosynthesis pathway,plant hormone signal transduction pathway,and phenylpropanoid biosynthesis pathway in A.hypogaea roots responded to the infestation of M.incognita.Furthermore,the AhHPT gene,encoding homogentisate phytyltransferase,was considered to be an ideal candidate gene due to its higher expression based on the transcriptome data and quantitative real-time PCR analysis.Conclusion:Therefore,the key gene AhHPT might be involved in the A.hypogaea against M.incognita.These findings lay a foundation for revealing the molecular mechanism of A.hypogaea resistance to M.incognita and also provide a prerequisite for further gene function verification,aiming at RKN-resistant molecular breeding. 展开更多
关键词 Arachis hypogaea Meloidogyne incognita Transcriptome data AhHPT gene
下载PDF
Salt effect on MUCT system performance of nitrogen and phosphorus removal
2
作者 Huining Zhang Zhuowei Zhang +4 位作者 Kewei Jiang Zhili Li Kefeng Zhang jianqing ma Yongxing Qian 《Green Energy & Environment》 SCIE CSCD 2021年第5期670-677,共8页
The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphor... The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphorus and the sludge characteristics at salt concentrations(0.0,3.2,6.4,11.2 and 16.0 g L^(-1))were analyzed.With the salt concentration increasing,all the COD,NH_(4)^(+)-N,TN and TP removal rates exhibited a trend of decline,and exhibited an initial reduction and subsequent increase at every stage of salt concentration.NH_(4)^(+)-N,TN and TP removal rates were 92.7%,51.5%and 67.2%in 16 g L^(-1) salt concentration,respectively.And they were outperformed the literature reported and acceptable in practical applications.When the salinity of wastewater changed from 0.0 to 16.0 g L^(-1),the biomass yield coefficients increased from 0.0794 to 0.126 g VSS/g COD.Increased salinity had a detrimental effect on phosphorus-accumulating organisms(PAOs)and denitrifying PAOs(DPAOs)(especially DPAOs).Therefore,phosphorus removal gradually depended on PAO.The simultaneous nitrification and denitrification(SND)rate and nitrogen removal rate(including nitrification rate,denitrification rate,and total nitrogen removal rate)gradually decreased with the increased salinity. 展开更多
关键词 Aquaculture wastewater Denitrifying phosphorus removal MUCT process TP SND rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部