Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very sm...Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.展开更多
Six-junction vertically-stacked Ga As laser power converters(LPCs) with n^+-Ga As/p^+-Al0.37 Ga0.63 As tunnel junctions have been designed and grown by metal-organic chemical vapor deposition for converting the po...Six-junction vertically-stacked Ga As laser power converters(LPCs) with n^+-Ga As/p^+-Al0.37 Ga0.63 As tunnel junctions have been designed and grown by metal-organic chemical vapor deposition for converting the power of 808 nm lasers. The LPC chips are characterized by measuring current–voltage(I–V) characteristics under 808 nm laser illumination, and a maximum conversion efficiency ηc of 53.1% is obtained for LPCs with an aperture diameter of 2 mm at an input laser power of 0.5 W. In addition, the characteristics of the LPCs are analyzed by a standard equivalent-circuit model, and the reverse saturation current, ideality factor, series resistance and shunt resistance are extracted by fitting of the I–V curves.展开更多
GaInP alloy could be the most trusted key material for fabricating super-high-efficiency single-and multijunction solar cells, especially for space applications. The storage and transfer of optical excitation energy i...GaInP alloy could be the most trusted key material for fabricating super-high-efficiency single-and multijunction solar cells, especially for space applications. The storage and transfer of optical excitation energy in this key alloy is thus a key subject of the energy conversion from optical to electrical. In this article we present a study of the subject through investigating photoluminescence(PL) degradation in the GaInP epilayer at 4 K under the continuous optical excitations of ultraviolet(UV) 325 nm, visible 488.0 and 514.5 nm lasers. It is found that the decline of PL intensity with the irradiation time may be represented by I(t)/I0=(1 + tτ-1)-1+C, where I0 is the luminescence intensity at the beginning of irradiation, a time constant, and C a background. Moreover, the PL degradation degree reduces with increasing the excitation wavelength. In addition, some red shift of the PL peak is observed accompanying with the intensity decline under the UV laser excitation. These PL signatures indicate that the localized carriers within the local atomic ordering domains play a major role in the storage and transfer of the excitation energy via photon recycling processes.展开更多
Four-junction A1GaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-A10.37Ga0.63As hetero- structure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) f...Four-junction A1GaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-A10.37Ga0.63As hetero- structure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency ηc of 56.9% + 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current-voltage (I-V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC.展开更多
In this paper, influence of temperature and reverse bias on photocurrent spectrum and spectral response of a monolithic GalnP/GaAs double-junction solar cell was investigated in detail. Two sharp spectral response off...In this paper, influence of temperature and reverse bias on photocurrent spectrum and spectral response of a monolithic GalnP/GaAs double-junction solar cell was investigated in detail. Two sharp spectral response offsets, corresponding to the bandedge photo absorption of the bottom GaAs and the top GalnP subcells, respectively, show the starting response points of individual subcells. More interestingly, the cell photocurrent was found to enhance significantly with increasing the temperature. In addition, the cell photocurrent also increases obviously as the reverse bias voltage increases. The integrated photocurrent intensity of the top GalnP subcell was particularly addressed. A theoretical model was proposed to simulate the reverse bias dependence of the integrated photocurrent of the GalnP subceU at different temperatures.展开更多
基金partially supported by the Jiangsu Province Science Foundation for Youths (No. BK20170431)the National Natural Science Foundation of China (No. 61604171)。
文摘Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.
基金supported by the National Natural Science Foundation of China(No.61604171)the Jiangsu Province Science Foundation for Youths(No.BK20170431)Zhongtian Technology Group Co.Ltd
文摘Six-junction vertically-stacked Ga As laser power converters(LPCs) with n^+-Ga As/p^+-Al0.37 Ga0.63 As tunnel junctions have been designed and grown by metal-organic chemical vapor deposition for converting the power of 808 nm lasers. The LPC chips are characterized by measuring current–voltage(I–V) characteristics under 808 nm laser illumination, and a maximum conversion efficiency ηc of 53.1% is obtained for LPCs with an aperture diameter of 2 mm at an input laser power of 0.5 W. In addition, the characteristics of the LPCs are analyzed by a standard equivalent-circuit model, and the reverse saturation current, ideality factor, series resistance and shunt resistance are extracted by fitting of the I–V curves.
基金supported by the National Natural Science Foundation of China (Grant No. 11374247)in part by a grant from the University Grants Committee Areas of Excellence Scheme of the Hong Kong Special Administrative Region, China (Project No. [AoE/P-03/08])
文摘GaInP alloy could be the most trusted key material for fabricating super-high-efficiency single-and multijunction solar cells, especially for space applications. The storage and transfer of optical excitation energy in this key alloy is thus a key subject of the energy conversion from optical to electrical. In this article we present a study of the subject through investigating photoluminescence(PL) degradation in the GaInP epilayer at 4 K under the continuous optical excitations of ultraviolet(UV) 325 nm, visible 488.0 and 514.5 nm lasers. It is found that the decline of PL intensity with the irradiation time may be represented by I(t)/I0=(1 + tτ-1)-1+C, where I0 is the luminescence intensity at the beginning of irradiation, a time constant, and C a background. Moreover, the PL degradation degree reduces with increasing the excitation wavelength. In addition, some red shift of the PL peak is observed accompanying with the intensity decline under the UV laser excitation. These PL signatures indicate that the localized carriers within the local atomic ordering domains play a major role in the storage and transfer of the excitation energy via photon recycling processes.
基金Project financially supported by the National Natural Science Foundation of China(No.61376065)Zhongtian Technology Group Co.Ltd
文摘Four-junction A1GaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-A10.37Ga0.63As hetero- structure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency ηc of 56.9% + 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current-voltage (I-V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 11374247)
文摘In this paper, influence of temperature and reverse bias on photocurrent spectrum and spectral response of a monolithic GalnP/GaAs double-junction solar cell was investigated in detail. Two sharp spectral response offsets, corresponding to the bandedge photo absorption of the bottom GaAs and the top GalnP subcells, respectively, show the starting response points of individual subcells. More interestingly, the cell photocurrent was found to enhance significantly with increasing the temperature. In addition, the cell photocurrent also increases obviously as the reverse bias voltage increases. The integrated photocurrent intensity of the top GalnP subcell was particularly addressed. A theoretical model was proposed to simulate the reverse bias dependence of the integrated photocurrent of the GalnP subceU at different temperatures.