By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning...By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.展开更多
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of...A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.展开更多
Dynamic Simultaneous Localization and Mapping(SLAM)in visual scenes is currently a major research area in fields such as robot navigation and autonomous driving.However,in the face of complex real-world envi-ronments,...Dynamic Simultaneous Localization and Mapping(SLAM)in visual scenes is currently a major research area in fields such as robot navigation and autonomous driving.However,in the face of complex real-world envi-ronments,current dynamic SLAM systems struggle to achieve precise localization and map construction.With the advancement of deep learning,there has been increasing interest in the development of deep learning-based dynamic SLAM visual odometry in recent years,and more researchers are turning to deep learning techniques to address the challenges of dynamic SLAM.Compared to dynamic SLAM systems based on deep learning methods such as object detection and semantic segmentation,dynamic SLAM systems based on instance segmentation can not only detect dynamic objects in the scene but also distinguish different instances of the same type of object,thereby reducing the impact of dynamic objects on the SLAM system’s positioning.This article not only introduces traditional dynamic SLAM systems based on mathematical models but also provides a comprehensive analysis of existing instance segmentation algorithms and dynamic SLAM systems based on instance segmentation,comparing and summarizing their advantages and disadvantages.Through comparisons on datasets,it is found that instance segmentation-based methods have significant advantages in accuracy and robustness in dynamic environments.However,the real-time performance of instance segmentation algorithms hinders the widespread application of dynamic SLAM systems.In recent years,the rapid development of single-stage instance segmentationmethods has brought hope for the widespread application of dynamic SLAM systems based on instance segmentation.Finally,possible future research directions and improvementmeasures are discussed for reference by relevant professionals.展开更多
The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019.With the development of sensors and smart devices,factories and enterprises have accumulated a large amount of data...The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019.With the development of sensors and smart devices,factories and enterprises have accumulated a large amount of data in their daily production,which creates extremely favorable conditions for robots to perform machine learning.However,in recent years,people’s awareness of data privacy has been increasing,leading to the inability to circulate data between different enterprises,resulting in the emergence of data silos.The emergence of federated learning provides a feasible solution to this problem,and the combination of federated learning and multi-robot systems can break down data silos and improve the overall performance of robots.However,as scholars have studied more deeply,they found that federated learning has very limited privacy protection.Therefore,how to protect data privacy from infringement remains an important issue.In this paper,we first give a brief introduction to the current development of multi-robot and federated learning;second,we review three aspects of privacy protection methods commonly used,privacy protection methods for multi-robot,and Other Problems Faced by Multi-robot Systems,focusing on method comparisons and challenges;and finally draw conclusions and predict possible future research directions.展开更多
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ...Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development.展开更多
In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has imp...In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization.展开更多
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ...Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.展开更多
基金funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+1 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Central Leading Local Science and Technology Development Fund Project of Wuzhou(No.202201001).
文摘By integrating deep neural networks with reinforcement learning,the Double Deep Q Network(DDQN)algorithm overcomes the limitations of Q-learning in handling continuous spaces and is widely applied in the path planning of mobile robots.However,the traditional DDQN algorithm suffers from sparse rewards and inefficient utilization of high-quality data.Targeting those problems,an improved DDQN algorithm based on average Q-value estimation and reward redistribution was proposed.First,to enhance the precision of the target Q-value,the average of multiple previously learned Q-values from the target Q network is used to replace the single Q-value from the current target Q network.Next,a reward redistribution mechanism is designed to overcome the sparse reward problem by adjusting the final reward of each action using the round reward from trajectory information.Additionally,a reward-prioritized experience selection method is introduced,which ranks experience samples according to reward values to ensure frequent utilization of high-quality data.Finally,simulation experiments are conducted to verify the effectiveness of the proposed algorithm in fixed-position scenario and random environments.The experimental results show that compared to the traditional DDQN algorithm,the proposed algorithm achieves shorter average running time,higher average return and fewer average steps.The performance of the proposed algorithm is improved by 11.43%in the fixed scenario and 8.33%in random environments.It not only plans economic and safe paths but also significantly improves efficiency and generalization in path planning,making it suitable for widespread application in autonomous navigation and industrial automation.
基金This research was funded by National Natural Science Foundation of China(No.62063006)Guangxi Science and Technology Major Program(No.2022AA05002)+2 种基金Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region(No.2022GXZDSY003)Guangxi Key Laboratory of Spatial Information and Geomatics(Guilin University of Technology)(No.21-238-21-16)Innovation Project of Guangxi Graduate Education(No.YCSW2023352).
文摘A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection.
基金the National Natural Science Foundation of China(No.62063006)the Natural Science Foundation of Guangxi Province(No.2023GXNS-FAA026025)+3 种基金the Innovation Fund of Chinese Universities Industry-University-Research(ID:2021RYC06005)the Research Project for Young andMiddle-Aged Teachers in Guangxi Universi-ties(ID:2020KY15013)the Special Research Project of Hechi University(ID:2021GCC028)financially supported by the Project of Outstanding Thousand Young Teachers’Training in Higher Education Institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region.
文摘Dynamic Simultaneous Localization and Mapping(SLAM)in visual scenes is currently a major research area in fields such as robot navigation and autonomous driving.However,in the face of complex real-world envi-ronments,current dynamic SLAM systems struggle to achieve precise localization and map construction.With the advancement of deep learning,there has been increasing interest in the development of deep learning-based dynamic SLAM visual odometry in recent years,and more researchers are turning to deep learning techniques to address the challenges of dynamic SLAM.Compared to dynamic SLAM systems based on deep learning methods such as object detection and semantic segmentation,dynamic SLAM systems based on instance segmentation can not only detect dynamic objects in the scene but also distinguish different instances of the same type of object,thereby reducing the impact of dynamic objects on the SLAM system’s positioning.This article not only introduces traditional dynamic SLAM systems based on mathematical models but also provides a comprehensive analysis of existing instance segmentation algorithms and dynamic SLAM systems based on instance segmentation,comparing and summarizing their advantages and disadvantages.Through comparisons on datasets,it is found that instance segmentation-based methods have significant advantages in accuracy and robustness in dynamic environments.However,the real-time performance of instance segmentation algorithms hinders the widespread application of dynamic SLAM systems.In recent years,the rapid development of single-stage instance segmentationmethods has brought hope for the widespread application of dynamic SLAM systems based on instance segmentation.Finally,possible future research directions and improvementmeasures are discussed for reference by relevant professionals.
基金the National Natural Science Foundation of China(No.62063006)to the Natural Science Foundation of Guangxi Province(No.2023GXNSFAA026025)+2 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2021RYC06005)to the Research Project for Young and Middle-Aged Teachers in Guangxi Universities(ID:2020KY15013)to the Special Research Project of Hechi University(ID:2021GCC028).
文摘The robotics industry has seen rapid development in recent years due to the Corona Virus Disease 2019.With the development of sensors and smart devices,factories and enterprises have accumulated a large amount of data in their daily production,which creates extremely favorable conditions for robots to perform machine learning.However,in recent years,people’s awareness of data privacy has been increasing,leading to the inability to circulate data between different enterprises,resulting in the emergence of data silos.The emergence of federated learning provides a feasible solution to this problem,and the combination of federated learning and multi-robot systems can break down data silos and improve the overall performance of robots.However,as scholars have studied more deeply,they found that federated learning has very limited privacy protection.Therefore,how to protect data privacy from infringement remains an important issue.In this paper,we first give a brief introduction to the current development of multi-robot and federated learning;second,we review three aspects of privacy protection methods commonly used,privacy protection methods for multi-robot,and Other Problems Faced by Multi-robot Systems,focusing on method comparisons and challenges;and finally draw conclusions and predict possible future research directions.
基金the National Natural Science Foundation of China(No.62063006)to the Natural Science Foundation of Guangxi Province(No.2023GXNS-FAA026025)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2021RYC06005)to the Research Project for Young and Middle-aged Teachers in Guangxi Universities(ID:2020KY15013)to the Special Research Project of Hechi University(ID:2021GCC028)supported by the Project of Outstanding Thousand Young Teachers’Training in Higher Education Institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region.
文摘Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development.
基金the National Natural Science Foundation of China(No.62063006)the Natural Science Foundation of Guangxi Province(No.2023GXNSFAA026025)+3 种基金to the Innovation Fund of Chinese Universities Industry-University-Research(ID:2021RYC06005)to the Research Project for Young and Middle-Aged Teachers in Guangxi Universities(ID:2020KY15013)to the Special Research Project of Hechi University(ID:2021GCC028)supported by the Project of Outstanding Thousand Young Teachers’Training in Higher Education Institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory of AI and Information Processing(Hechi University),Education Department of Guangxi Zhuang Autonomous Region.
文摘In recent years,with the continuous deepening of smart city construction,there have been significant changes and improvements in the field of intelligent transportation.The semantic segmentation of road scenes has important practical significance in the fields of automatic driving,transportation planning,and intelligent transportation systems.However,the current mainstream lightweight semantic segmentation models in road scene segmentation face problems such as poor segmentation performance of small targets and insufficient refinement of segmentation edges.Therefore,this article proposes a lightweight semantic segmentation model based on the LiteSeg model improvement to address these issues.The model uses the lightweight backbone network MobileNet instead of the LiteSeg backbone network to reduce the network parameters and computation,and combines the Coordinate Attention(CA)mechanism to help the network capture long-distance dependencies.At the same time,by combining the dependencies of spatial information and channel information,the Spatial and Channel Network(SCNet)attention mechanism is proposed to improve the feature extraction ability of the model.Finally,a multiscale transposed attention encoding(MTAE)module was proposed to obtain features of different resolutions and perform feature fusion.In this paper,the proposed model is verified on the Cityscapes dataset.The experimental results show that the addition of SCNet and MTAE modules increases the mean Intersection over Union(mIoU)of the original LiteSeg model by 4.69%.On this basis,the backbone network is replaced with MobileNet,and the CA model is added at the same time.At the cost of increasing the minimum model parameters and computing costs,the mIoU of the original LiteSeg model is increased by 2.46%.This article also compares the proposed model with some current lightweight semantic segmentation models,and experiments show that the comprehensive performance of the proposed model is the best,especially in achieving excellent results in small object segmentation.Finally,this article will conduct generalization testing on the KITTI dataset for the proposed model,and the experimental results show that the proposed algorithm has a certain degree of generalization.
基金The authors are highly thankful to the Development Research Center of Guangxi Relatively Sparse-populated Minorities(ID:GXRKJSZ201901)to the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281164)This research was financially supported by the project of outstanding thousand young teachers’training in higher education institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing.
文摘Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.