期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on Feature Extraction and Classification Method of Vibration Signal of Escalator Sprocket Bearing
1
作者 Deyang Liu Yuhang Su +2 位作者 Ningxiang Yang jianxun chen Jicheng Li 《电气工程与自动化(中英文版)》 2023年第1期1-10,共10页
In order to improve the accuracy of escalator sprocket bearing fault diagnosis,the problem of the feature extraction method of bearing vibration signal is addressed.In this paper,empirical mode is used to decompose th... In order to improve the accuracy of escalator sprocket bearing fault diagnosis,the problem of the feature extraction method of bearing vibration signal is addressed.In this paper,empirical mode is used to decompose the original signal,and the optimal modal component among the multiple modal components is obtained after the optimization decomposition is selected by the envelope spectrum method,and the multi-angle feature measure is introduced to extract the fault characteristic value.According to the vibration characteristics of the bearing vibration signal data,a bearing signal feature group that is more inclined to the fault feature category information is established,which avoids the absolute problem of extracting a single metric feature.The fuzzy C-means clustering algorithm is used to cluster the sample data with similar characteristics into the same cluster area,which effectively solves the problem that a single measurement analysis cannot characterize the complex internal characteristics ofthe bearing vibration signal. 展开更多
关键词 BEARING VIBRATION Multi-Angle Feature Measurement Signal Feature Group Empirical Mode Fuzzy C-Means Clustering
下载PDF
Experimental and Numerical Study on the Shear Strength and Strain Energy of Rock Under Constant Shear Stress and Unloading Normal Stress
2
作者 Tantan Zhu Da Huang +2 位作者 jianxun chen Yanbin Luo Longfei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期79-97,共19页
Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stre... Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero. 展开更多
关键词 Unloading normal stress direct shear test strain energy energy conversion
下载PDF
Effect of Three-High Rotary Piercing Process on Microstructure,Texture and Mechanical Properties of Magnesium Alloy Seamless Tube
3
作者 Xiaofeng Ding Zehao Wu +3 位作者 Tong Li jianxun chen Yuanhua Shuang Baosheng Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期953-968,共16页
Mg alloy seamless tubes(MASTs)were prepared through three-high rotary piercing process,effect of billet temperature,feed angle and plug advance on microstructure,texture and mechanical properties of tubes were investi... Mg alloy seamless tubes(MASTs)were prepared through three-high rotary piercing process,effect of billet temperature,feed angle and plug advance on microstructure,texture and mechanical properties of tubes were investigated.The effect on the deformation mechanism and improving mechanical properties mechanism of this process for MASTs were studied.The results show that the grain size could be refined to 11.3-31.1%of the initial grain size and the microstructure was more uniform due to the accumulation of strain.The formation of high strain gradient at the grain boundary activated the non-basal slip.This piercing process could change the grain orientation of as-extruded billet and eliminate the initial basal texture to produce new favorable texture.And the process could accelerate the continuous dynamic recrystallization process.After piercing,yield strength of pierced tubes decreased by 6.7%,ultimate tensile strength(UTS)and elongation increased by 32.4 and 45%,respectively,at optimal parameters.The plate-shapedβ_(1)-Mg_(17)Al_(12) orientation transformed from basal plates to prismatic plates,facilitating the increase in UTS and ductility.The decrease size of nanoscale precipitates could reduce the cracking possibility.The critical resolved shear stress ratios of pyramidal(10−11)slip and(11−22)slip to basal slip for the sample including prismatic plates both decreased compared to that including basal plates.This could enhance the ductility of tube sample.Moreover,grain boundary sliding could contribute to a better ductility via coordinating deformation and reducing stress concentration during piercing process. 展开更多
关键词 Mg alloy tube Rotary piercing MICROSTRUCTURE TEXTURE Mechanical properties
原文传递
Research status and progress of tunnel frost damage 被引量:16
4
作者 Yanbin Luo jianxun chen 《Journal of Traffic and Transportation Engineering(English Edition)》 CSCD 2019年第3期297-309,共13页
The problems of frost damage in cold region tunnels have been systematically analyzed and studied by local and foreign scholars. A series of important achievements has been proposed. In this paper, the research result... The problems of frost damage in cold region tunnels have been systematically analyzed and studied by local and foreign scholars. A series of important achievements has been proposed. In this paper, the research results on mechanism of frost damage, analysis of temperature field, classification of frost damage levels, and frost prevention technologies are summarized. The principles and limitations of the three major theories of frost damage mechanism are elaborated, and the importance of structural damage research on shotcrete in cold region tunnels is emphasized. Two major defects of current research on temperature field are concluded. The present situation of research on frost damage classification of cold region tunnels is discussed. The directions of further studies for tunnel temperature field and frost damage classification are proposed. The prevention technologies for tunnel frost damage in foreign countries, and the advantages and disadvantages of the four major prevention technologies in China and their applicable conditions, are concluded and analyzed. Meanwhile, the importance of frost damage classification is highlighted. Therefore, the local and foreign research results for cold region tunnels are systematically concluded, the defects of the researches are comprehensively analyzed, and the directions of further study are proposed. They are significant to solve the problems of tunnel frost damage in the future. 展开更多
关键词 COLD region TUNNEL FROST DAMAGE mechanism Temperature field TUNNEL FROST DAMAGE classification PREVENTION MEASURE
原文传递
Mechanical properties of rock bolt and analysis for the full-process of sliding failure based on rock mass absolute displacement
5
作者 Yanbin Luo Zhou Shi +4 位作者 Chuanwu Wang jianxun chen Weiwei Liu Yao Li Yunfei Wu 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2022年第3期490-506,共17页
Previous studies rarely involved the mechanical properties of anchorage system under the condition of internal absolute displacement of surrounding rock and the solution of important parameters of anchorage system. In... Previous studies rarely involved the mechanical properties of anchorage system under the condition of internal absolute displacement of surrounding rock and the solution of important parameters of anchorage system. In this paper, the absolute displacement law of rock mass under the anchorage system is analyzed by the fiber grating(FBG) multi-point displacement meter and multidirectional displacement conversion formula. Based on the coordinated deformation principle for rock bolt and rock mass, the mechanical analysis model for rock bolt-rock mass system is established, and the influence rules of rock bolt length, rock bolt diameter and rock bolt preload on the internal force distribution of rock bolt is studied based on the stress analysis of full-length rock bolt in a tunnel engineering.The results show that:(1) with the increase of rock bolt length, the anchoring effect gradually enhances, but the improvement degree decreases gradually;(2) with the increase of rock bolt diameter, the anchoring effect is enhanced;at the same time, however, the shear stress of rock bolt is larger, and the possibility of rock bolt sliding also increases;and(3) with the increase of preload, the increase of “anchor length” makes the anti-sliding ability of rock bolt increase correspondingly, and the supporting effect of rock bolt increases gradually. Then the full-process analysis for the mechanical mechanism of rock bolt sliding failure and the iterative calculation method for rock bolt displacement are studied. At last, the numerical simulation for pull-out test is carried out through the finite element analysis to verify the calculation results of mechanical model, and according to the iterative operation, the two important parameters such as the interface shear stiffness K and the interface peak shear strength τPare solved. The analysis show that the numerical simulation results are in good agreement with the mechanical model calculation. This study can provide a theoretical basis for rock bolt support technology and support structure design. 展开更多
关键词 Tunnel engineering Absolute displacement Bolt-rock support system Sliding failure Neutral point
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部