For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life sig...For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life” and “biosignature”, have been given considerable attention. Due to the high costs of direct exploration of Mars, Mars-like regions on Earth have been invaluable targets for astrobiological research, places where scientists could practice the search for “biosignatures” and refine ways to detect them. This review summarizes scientific instrumental techniques that have resulted from this work. Instruments must necessarily be our “eyes” and “hands” as we attempt to identify and quantify biosignatures on Mars.Scientific devices that can be applied in astrobiology include mass spectrometers and electromagnetic-spectrum-based spectrometers,redox potential indicators, circular dichroism polarimeters, in situ nucleic acid sequencers, life isolation/cultivation systems, and imagers.These devices and how to interpret the data they collect have been tested in Mars-analog extreme environments on Earth to validate their practicality on Mars. To anticipate the challenges of instrumental detection of biosignatures through the full evolutionary history of Mars, Terrestrial Mars analogs are divided into four major categories according to their similarities to different Martian geological periods(the Early-Middle Noachian Period, the Late Noachian-Early Hesperian Period, the Late Hesperian-Early Amazonian Period, and the Middle-Late Amazonian Period). Future missions are suggested that would focus more intensively on Mars’ Southern Hemisphere, once landing issues there are solved by advances in spacecraft engineering, since exploration of these early terrains will permit investigations covering a wider continuum of the shifting habitability of Mars through its geological history. Finally, this paper reviews practical applications of the range of scientific instruments listed above, based on the four categories of Mars analogs here on Earth. We review the selection of instruments suitable for autonomous robotic rover tests in these Mars analogs. From considerations of engineering efficiency,a Mars rover ought to be equipped with as few instrument assemblies as possible. Therefore, once candidate landing regions on Mars are defined, portable suites of instruments should be smartly devised on the basis of the known geological, geochemical, geomorphological,and chronological characteristics of each Martian landing region. Of course, if Mars sample-return missions are successful, such samples will allow experiments in laboratories on Earth that can be far more comprehensive and affordable than is likely to be practicable on Mars.To exclude false positive and false negative conclusions in the search for extraterrestrial life, multiple diverse and complementary analytical techniques must be combined, replicated, and carefully interpreted. The question of whether signatures of life can be detected on Mars is of the greatest importance. Answering that question is extremely challenging but appears to have become manageable.展开更多
Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditi...Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.展开更多
Rapid determination of chlorophyll content is significant for evaluating cotton’s nutritional and physiological status.Hyperspectral technology equipped with multivariate analysis methods has been widely used for chl...Rapid determination of chlorophyll content is significant for evaluating cotton’s nutritional and physiological status.Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection.However,the model developed on one batch or variety cannot produce the same effect for another due to variations,such as samples and measurement conditions.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) Grant 41621004the Key Research Program of the Chinese Academy of Sciences (ZDBS-SSW-TLC001)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB41010403)the Youth Innovation Promotion Association of the Chinese Academy of Sciences,the Key Research Programs of the Institute of Geology and Geophysics,Chinese Academy of Sciences (IGGCAS-201904 and IGGCAS-202102)
文摘For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life” and “biosignature”, have been given considerable attention. Due to the high costs of direct exploration of Mars, Mars-like regions on Earth have been invaluable targets for astrobiological research, places where scientists could practice the search for “biosignatures” and refine ways to detect them. This review summarizes scientific instrumental techniques that have resulted from this work. Instruments must necessarily be our “eyes” and “hands” as we attempt to identify and quantify biosignatures on Mars.Scientific devices that can be applied in astrobiology include mass spectrometers and electromagnetic-spectrum-based spectrometers,redox potential indicators, circular dichroism polarimeters, in situ nucleic acid sequencers, life isolation/cultivation systems, and imagers.These devices and how to interpret the data they collect have been tested in Mars-analog extreme environments on Earth to validate their practicality on Mars. To anticipate the challenges of instrumental detection of biosignatures through the full evolutionary history of Mars, Terrestrial Mars analogs are divided into four major categories according to their similarities to different Martian geological periods(the Early-Middle Noachian Period, the Late Noachian-Early Hesperian Period, the Late Hesperian-Early Amazonian Period, and the Middle-Late Amazonian Period). Future missions are suggested that would focus more intensively on Mars’ Southern Hemisphere, once landing issues there are solved by advances in spacecraft engineering, since exploration of these early terrains will permit investigations covering a wider continuum of the shifting habitability of Mars through its geological history. Finally, this paper reviews practical applications of the range of scientific instruments listed above, based on the four categories of Mars analogs here on Earth. We review the selection of instruments suitable for autonomous robotic rover tests in these Mars analogs. From considerations of engineering efficiency,a Mars rover ought to be equipped with as few instrument assemblies as possible. Therefore, once candidate landing regions on Mars are defined, portable suites of instruments should be smartly devised on the basis of the known geological, geochemical, geomorphological,and chronological characteristics of each Martian landing region. Of course, if Mars sample-return missions are successful, such samples will allow experiments in laboratories on Earth that can be far more comprehensive and affordable than is likely to be practicable on Mars.To exclude false positive and false negative conclusions in the search for extraterrestrial life, multiple diverse and complementary analytical techniques must be combined, replicated, and carefully interpreted. The question of whether signatures of life can be detected on Mars is of the greatest importance. Answering that question is extremely challenging but appears to have become manageable.
基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA17010505)The authors thank all the staff involved in the Scientific Experimental System in Near Space Project(SENSE)of the HH-19-2,HH-19-9,HH-20-7,and HH-21-5 flight missions.
文摘Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.
基金This research was supported by XPCC Science and Technol-ogy Projects of Key Areas(2020AB005).
文摘Rapid determination of chlorophyll content is significant for evaluating cotton’s nutritional and physiological status.Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection.However,the model developed on one batch or variety cannot produce the same effect for another due to variations,such as samples and measurement conditions.