Kagome lattice,characterized by two-dimensional honeycomb network of corner-sharing triangles[1],presents flat bands,Dirac cones,and van Hove singularities(VHSs),which have been theoretically predicted and experimenta...Kagome lattice,characterized by two-dimensional honeycomb network of corner-sharing triangles[1],presents flat bands,Dirac cones,and van Hove singularities(VHSs),which have been theoretically predicted and experimentally observed[2-4].When combined with spin-orbit coupling(SOC)and magnetism,novel properties have emerged.Although kagome materials vary,most of their strong interlayer interactions make the synthesized crystals not layered,and the properties deviating from the raw two-dimensional kagome lattices.These crystals are difficult to fabricate into thin devices and to tune the physical properties of the materials using gate voltage.展开更多
基金National Key Research and Development Program of China(2022YFA1402404)National Natural Science Foundation of China(92161201,T2221003,12104221,12104220,12274208,12025404,12004174,91961101,61822403,11874203,and 12374043)+1 种基金Natural Science Foundation of Jiangsu Province(BK20230079)Fundamental Research Funds for the Central Universities(020414380192 and 2024300432)。
文摘Kagome lattice,characterized by two-dimensional honeycomb network of corner-sharing triangles[1],presents flat bands,Dirac cones,and van Hove singularities(VHSs),which have been theoretically predicted and experimentally observed[2-4].When combined with spin-orbit coupling(SOC)and magnetism,novel properties have emerged.Although kagome materials vary,most of their strong interlayer interactions make the synthesized crystals not layered,and the properties deviating from the raw two-dimensional kagome lattices.These crystals are difficult to fabricate into thin devices and to tune the physical properties of the materials using gate voltage.