期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
DeepRisk:A deep learning approach for genome-wide assessment of common disease risk 被引量:1
1
作者 Jiajie Peng Zhijie Bao +8 位作者 Jingyi Lia Ruijiang Han Yuxian Wang Lu Han Jinghao Peng Tao Wang jianye hao Zhongyu Wei Xuequn Shang 《Fundamental Research》 CAS CSCD 2024年第4期752-760,共9页
The potential for being able to identify individuals at high disease risk solely based on genotype data has garnered significant interest.Although widely applied,traditional polygenic risk scoring methods fall short,a... The potential for being able to identify individuals at high disease risk solely based on genotype data has garnered significant interest.Although widely applied,traditional polygenic risk scoring methods fall short,as they are built on additive models that fail to capture the intricate associations among single nucleotide polymorphisms(SNPs).This presents a limitation,as genetic diseases often arise from complex interactions between multiple SNPs.To address this challenge,we developed DeepRisk,a biological knowledge-driven deep learning method for modeling these complex,nonlinear associations among SNPs,to provide a more effective method for scoring the risk of common diseases with genome-wide genotype data.Evaluations demonstrated that DeepRisk outperforms existing PRs-based methods in identifying individuals at high risk for four common diseases:Alzheimer's disease,inflammatory bowel disease,type 2diabetes,and breast cancer. 展开更多
关键词 Disease risk prediction Deep learning Polygenic risk score Common disease risk Disease prevention
原文传递
博弈智能的研究与应用 被引量:4
2
作者 郝建业 邵坤 +4 位作者 李凯 李栋 毛航宇 胡舒悦 王震 《中国科学:信息科学》 CSCD 北大核心 2023年第10期1892-1923,共32页
博弈智能是一个涵盖博弈论、人工智能等方向的交叉领域,重点研究个体或组织间的交互作用,以及如何通过对博弈关系的定量建模进而实现最优策略的精确求解,最终形成智能化决策和决策知识库.近年来,随着行为数据的海量爆发和博弈形式的多样... 博弈智能是一个涵盖博弈论、人工智能等方向的交叉领域,重点研究个体或组织间的交互作用,以及如何通过对博弈关系的定量建模进而实现最优策略的精确求解,最终形成智能化决策和决策知识库.近年来,随着行为数据的海量爆发和博弈形式的多样化,博弈智能吸引了越来越多学者的研究兴趣,并在现实生活中得到广泛应用.本文围绕博弈智能这一研究领域,分别从3个方面进行了系统的调研、分析和总结.首先,回顾了博弈智能的相关背景,涵盖了单智能体马尔可夫(Markov)决策过程,基于博弈论的多智能体建模技术,以及强化学习、博弈学习等多智能体求解方案.其次,依照智能体之间的博弈关系不同,将博弈分为合作博弈、对抗博弈以及混合博弈这三大类范式,并分别介绍了每种博弈智能范式下的主要研究问题、主流研究方法以及当前典型应用.最后,总结了博弈智能的研究现状,以及亟待解决的主要问题与研究挑战,并展望了学术界和工业界的未来应用前景,为相关研究人员提供参考,进一步推动国家人工智能发展战略. 展开更多
关键词 博弈智能 博弈论 人工智能 多智能体系统 强化学习 均衡求解
原文传递
黑盒优化算法在化学合成条件调优中的应用 被引量:1
3
作者 陈柯辛 杨耀东 +3 位作者 王博文 郝建业 陈广勇 王平安 《中国科学:化学》 CAS CSCD 北大核心 2023年第1期26-38,共13页
随着自动化实验平台技术的发展,自优化技术与条件调优已成为化学合成的一大趋势.自优化技术通过评估、调整各种反应条件参数来优化反应目标函数,如产率.在自优化技术与算法中,黑盒优化算法有着重要的地位,被广泛地应用于合成化学中的反... 随着自动化实验平台技术的发展,自优化技术与条件调优已成为化学合成的一大趋势.自优化技术通过评估、调整各种反应条件参数来优化反应目标函数,如产率.在自优化技术与算法中,黑盒优化算法有着重要的地位,被广泛地应用于合成化学中的反应条件调优.本文概述了黑盒优化算法在反应条件调优中的应用方式,系统地介绍了化学反应的多种状态表征方式、各类别黑盒优化算法的基本原理以及现有的公开数据集与服务. 展开更多
关键词 黑盒优化 化学合成 反应条件 贝叶斯优化
原文传递
OSCAR:OOD State-Conservative Offline Reinforcement Learning for Sequential Decision Making
4
作者 Yi Ma Chao Wang +4 位作者 Chen Chen Jinyi Liu Zhaopeng Meng Yan Zheng jianye hao 《CAAI Artificial Intelligence Research》 2023年第1期91-101,共11页
Offline reinforcement learning(RL)is a data-driven learning paradigm for sequential decision making.Mitigating the overestimation of values originating from out-of-distribution(OOD)states induced by the distribution s... Offline reinforcement learning(RL)is a data-driven learning paradigm for sequential decision making.Mitigating the overestimation of values originating from out-of-distribution(OOD)states induced by the distribution shift between the learning policy and the previously-collected offline dataset lies at the core of offline RL.To tackle this problem,some methods underestimate the values of states given by learned dynamics models or state-action pairs with actions sampled from policies different from the behavior policy.However,since these generated states or state-action pairs are not guaranteed to be OOD,staying conservative on them may adversely affect the in-distribution ones.In this paper,we propose an OOD state-conservative offline RL method(OSCAR),which aims to address the limitation by explicitly generating reliable OOD states that are located near the manifold of the offline dataset,and then design a conservative policy evaluation approach that combines the vanilla Bellman error with a regularization term that only underestimates the values of these generated OOD states.In this way,we can prevent the value errors of OOD states from propagating to in-distribution states through value bootstrapping and policy improvement.We also theoretically prove that the proposed conservative policy evaluation approach guarantees to underestimate the values of OOD states.OSCAR along with several strong baselines is evaluated on the offline decision-making benchmarks D4RL and autonomous driving benchmark SMARTS.Experimental results show that OSCAR outperforms the baselines on a large portion of the benchmarks and attains the highest average return,substantially outperforming existing offline RL methods. 展开更多
关键词 offline reinforcement learning out-of-distribution decision making
原文传递
Coach-assistedmulti-agent reinforcement learning framework for unexpected crashed agents 被引量:2
5
作者 Jian Zhao Youpeng Zhao +5 位作者 Weixun WANG Mingyu YANG Xunhan HU Wengang ZHOU jianye hao Houqiang LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第7期1032-1042,共11页
Multi-agent reinforcement learning is difficult to apply in practice,partially because of the gap between simulated and real-world scenarios.One reason for the gap is that simulated systems always assume that agents c... Multi-agent reinforcement learning is difficult to apply in practice,partially because of the gap between simulated and real-world scenarios.One reason for the gap is that simulated systems always assume that agents can work normally all the time,while in practice,one or more agents may unexpectedly“crash”during the coordination process due to inevitable hardware or software failures.Such crashes destroy the cooperation among agents and lead to performance degradation.In this work,we present a formal conceptualization of a cooperative multi-agent reinforcement learning system with unexpected crashes.To enhance the robustness of the system to crashes,we propose a coach-assisted multi-agent reinforcement learning framework that introduces a virtual coach agent to adjust the crash rate during training.We have designed three coaching strategies(fixed crash rate,curriculum learning,and adaptive crash rate)and a re-sampling strategy for our coach agent.To our knowledge,this work is the first to study unexpected crashes in a multi-agent system.Extensive experiments on grid-world and StarCraft II micromanagement tasks demonstrate the efficacy of the adaptive strategy compared with the fixed crash rate strategy and curriculum learning strategy.The ablation study further illustrates the effectiveness of our re-sampling strategy. 展开更多
关键词 Multi-agent system Reinforcement learning Unexpected crashed agents
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部