期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ambient noise surface wave tomography of marginal seas in east Asia 被引量:8
1
作者 Qing Wang XiaoDong Song jianye ren 《Earth and Planetary Physics》 2017年第1期13-25,共13页
We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan,Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green's functions from inter-... We conducted ambient noise tomography in east Asia, including the Chinese coastal provinces, Korea Peninsular, Japan,Taiwan Island, and marginal seas in between. We retrieved Rayleigh Green's functions from inter-station correlations of 12 months of continuous waveform data at 573 broadband stations in the region. We obtained group and phase velocity dispersion curves and dispersion maps for periods from 10 to 70 s and inverted for 3D Vs model of the crust and uppermost mantle. Moho and lithosphere thickness were derived from the 3D model. We observed three prominent low velocity zones in the upper mantle, two in the accretionary wedges above the Pacific and Philippine subduction slabs and one beneath the Changbai Mountain region. The crust and lithosphere are generally thin in the region. The velocity anomalies, crustal thickness, and lithosphere thickness all show a similar trend in NNE-SSW direction. The lithosphere shows a striking " sausage"-type structure with alternating thickness. The crust thickness and lithosphere thickness both decrease progressively from NW to SE direction, which coincides with the distribution of episodic magmatism in SE China.We propose that the subduction of paleo-Pacific slab and its rollback were mainly responsible for the crustal and lithosphere extension and the mantle lithosphere removal in east Asia. 展开更多
关键词 ambient noise tomography east Asia MOHO LITHOSPHERE EXTENSION
下载PDF
Syn-rift to post-rift tectonic transition and drainage reorganization in continental rifting basins:Detrital zircon analysis from the Songliao Basin,NE China
2
作者 Ying Song jianye ren +4 位作者 Keyu Liu Dawei Lyu Xinjie Feng Yuan Liu Andrei Stepashko 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期210-224,共15页
Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins.The sedimentary infill records the crustal response to this process.We have obta... Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins.The sedimentary infill records the crustal response to this process.We have obtained new detrital zircon U-Pb and Lu-Hf signatures from the Lower Cretaceous stratigraphic successions encompassing the commonly accepted syn-to post-rift transition boundary,the T4 unconformity,in the Songliao Basin,NE China.These constrain the Songliao Basin’s evolution from its center to distal margins,providing insights into the sediment provenance and dispersal pattern over the tectonic transition.Analysis of zircons from the syn-rift(the Shahezi and Yingcheng formations)and immediate post-rift(the Lower and Middle Denglouku Formation)stages reveals Phanerozoic age populations with positiveƐHf(t)values,which were derived from the proximal juvenile mantle-derived melt origin bedrocks of the Songliao Block.In contrast,the overlying samples from the Upper Denglouku Formation deposited in the subsequent post-rift stage contain exotic and ancient zircon populations with ages of 2.5 Ga&1.8 Ga and complex hafnium signatures,characteristic of a mixed origin.These are interpreted to be transported from distant cratonic terranes via larger drainage networks.It is obvious that the sediment dispersal pattern switched from being a local and hydrologically closed“intraregional”pattern to a“transcontinental”pattern during the transition.The time lag between the development of the T4 unconformity and the drainage reorganization also ensures a distinguishable3 Myr(106103 Ma,Late Albian)transition period of regional extent.During this transition stage,syn-rift faulting was replaced by postrift thermal subsidence,exhibiting a uniform sag configuration.Our new findings are important for understanding other continental rift basins during syn-to post-rift transition,which often demonstrates a complex interaction between the linkage and integration of sub-basins,and the reorganization of fluvial drainages and catchment systems. 展开更多
关键词 Rifting basin Songliao Basin Detrital geochronology Drainage reorganization PALEOGEOGRAPHY
下载PDF
Tectonics of the offshore Red River Fault recorded in the junction of the Yinggehai and Qiongdongnan Basins 被引量:1
3
作者 Chao LEI jianye ren +4 位作者 Jianxiang PEI Bowen LIU Xiang ZUO Jiaao LIU Shiguo ZHU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第11期1893-1908,共16页
The Red River Fault,which originated from the southeastern margin of the Tibetan Plateau,has a great significance for obtaining a further understanding of the regional tectonics,topography and river catchment evolutio... The Red River Fault,which originated from the southeastern margin of the Tibetan Plateau,has a great significance for obtaining a further understanding of the regional tectonics,topography and river catchment evolution,as well as the petroliferous sedimentary basin formation.The junction of the Yinggehai and Qiongdongnan Basins(YQB Junction)is the key to understanding when and how the strike-slip deformation on the South China Sea resulted from the collision between the Indian and Eurasian plates.In this study,we show regional seismic profiles,3D seismic and drilling core data to analyze the tectonostratigraphy in the YQB Junction,aiming to identify its tectonic framework and the associated faults system.A transitional domain from the strike-slip zone to the extensional deformation zone was mapped,which consisted of the No.1 Fault and the Zhongjian Uplift.The strike-slip faulting in the YQB Junction was active during the Oligocene-Early Miocene,with a period of strong faulting in the Early Oligocene.Integrated with the regional tectonic evolution,a coevolution model of strike-slip and extensional deformation in the YQB Junction and the adjacent area was built.In the Eocene,the YQB Junction was controlled by the NW-SE extension and formed a series of distributed rifts bounded by the NE-striking faults and filled up with proximal sediment.In the earliest Oligocene,a NW-trending strike-slip fault began to develop in the YQB Junction and crosscut the NEstriking normal faults.Since the occurrence of the strike-slip faults,the NE-striking faults,to the west of the No.1 Fault and the Zhongjian Uplift,failed to grow.However,to the east of the No.1 Fault and the Zhongjian Uplift,the faulting continued to develop until the latest Late Oligocene.The faulting of the NW-trending faults was observed to be active until the earliest Middle Miocene.Since then,with the exception of some diapiric structures and associated small-scale faulting in the Yinggehai Basin,we did not observe any basement-involved faulting.Our results will improve our understanding of the tectonics in the southeastern margin of the Tibetan Plateau and the South China Sea. 展开更多
关键词 Red River Fault South China Sea Southeastern margin of the Tibetan Plateau Junction of the Yinggehai and Qiongdongnan Basins
原文传递
En Echelon Faults and Basin Structure in Huizhou Sag, South China Sea: Implications for the Tectonics of the SE Asia 被引量:2
4
作者 Boubacar Hamidou Leyla jianye ren +1 位作者 Jing Zhang Chao Lei 《Journal of Earth Science》 SCIE CAS CSCD 2015年第5期690-699,共10页
The Huizhou sag is situated on the continental shelf of the northern continental margin of the South China Sea. In this paper we present a grid of reflection seismic and well data to characterize the basin structure a... The Huizhou sag is situated on the continental shelf of the northern continental margin of the South China Sea. In this paper we present a grid of reflection seismic and well data to characterize the basin structure and prominent unconformities. We employ EBM and 2DMOVE softwares to explore the subsidence history and stratigraphic development history of the basin. We found a rapid subsidence period since 15.5 Ma. Moreover, we calculated the stretching factors of the upper crust and the whole crust in the Huizhou sag. The results show the values are 1.10–1.13 and 1.08–1.31, respectively, indicating faulting in Huizhou sag is relatively small. It is noteworthy that the faults map reveals en echelon distribution at the north and south margins of the basin. We suggest en echelon faults here are caused by the subduction of Proto-South China Sea toward NW Borneo block and cease of the South China Sea. Considering the pronounced unconformities, subsidence rates, fault activities and sediment thickness, the Cenozoic tectonic evolution of the basin can be divided into rifting(49–32 Ma), post-rifted(32–15.5 Ma) and rapid subsidence(15.5–0 Ma) stages. Our study will shed new light on the tectonics of SE Asia and petroleum exploration in the South China Sea. 展开更多
关键词 South China Sea Pearl River Mouth Basin basement subsidence en echelon faults
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部