Tens of thousands of landslides were triggered by May 12, 2008 earthquake over a broad area. The main purpose of this article is to apply and verify earthquake-triggered landslide hazard analysis techniques by using w...Tens of thousands of landslides were triggered by May 12, 2008 earthquake over a broad area. The main purpose of this article is to apply and verify earthquake-triggered landslide hazard analysis techniques by using weight of evidence modeling in Qingshui (清水) River watershed, Deyang (德阳) City, Sichuan (四川) Province, China. Two thousand three hundred and twenty-one landslides were interpreted in the study area from aerial photographs and multi-source remote sensing imageries post-earthquake, verified by field surveys. The landslide inventory in the study area was established. A spatial database, including landslides and associated controlling parameters that may have influence on the occurrence of landslides, was constructed from topographic maps, geological maps, and enhanced thematic mapper (ETM+) remote sensing imageries. The factors that influence landslide occurrence,such as slope angle, aspect, curvature, elevation, flow accumulation, distance from drainages, and distance from roads were calculated from the topographic maps. Lithology, distance from seismogenic fault, distance from all faults, and distance from stratigraphic boundaries were derived from the geological maps. Normalized difference vegetation index (NDV1) was extracted from ETM+ images. Seismic intensity zoning was collected from Wenchuan (汶川) Ms8.0 Earthquake Intensity Distribution Map published by the China Earthquake Administration.Landslide hazard indices were calculated using the weight of evidence model, and landslide hazard maps were calculated from using different controlling parameters cases. The hazard map was compared with known landslide locations and verified. The success accuracy percentage of using all 13 controlling parameters was 71.82%. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low, and very low. The validation results showed satisfactory agreement between the hazard map and the existing landslides distribution data. The landslide hazard map can be used to identify and delineate unstable hazard-prone areas. It can also help planners to choose favorable locations for development schemes, such as infrastructural, buildings, road constructions, and environmental protection.展开更多
A new vibration type and motion characteristics were proposed according to the principle of manual sie- ving. A mechanical model of the new motion was established and the characteristics of the new vibrating screen we...A new vibration type and motion characteristics were proposed according to the principle of manual sie- ving. A mechanical model of the new motion was established and the characteristics of the new vibrating screen were analyzed to establish its equation of motion by using the vibration theory, to include as tech- nological parameters, amplitude, movement velocity, and throwing index through theoretical calculation. The efficiency of particle screening was studied at different values of frequency and swing declination angle. The discrete element method (DEM) was used to simulate the screening with the swing trace. The functional relationship between screening efficiency and the parameters was fitted with the least square method. The results show that high frequency and large swing angle are suitable for small particles, while small values are suitable for particles close to the aperture size. Compared to the linear vibration trace, both screening efficiency and processing capacity were effectively improved.展开更多
基金supported by the International Scientific Joint Project of China (No. 2009DFA21280)the National Natural Science Foundation of China (No. 40821160550)the Doctoral Candidate Innovation Research Support Program by Science & Technology Review (No. kjdb200902-5)
文摘Tens of thousands of landslides were triggered by May 12, 2008 earthquake over a broad area. The main purpose of this article is to apply and verify earthquake-triggered landslide hazard analysis techniques by using weight of evidence modeling in Qingshui (清水) River watershed, Deyang (德阳) City, Sichuan (四川) Province, China. Two thousand three hundred and twenty-one landslides were interpreted in the study area from aerial photographs and multi-source remote sensing imageries post-earthquake, verified by field surveys. The landslide inventory in the study area was established. A spatial database, including landslides and associated controlling parameters that may have influence on the occurrence of landslides, was constructed from topographic maps, geological maps, and enhanced thematic mapper (ETM+) remote sensing imageries. The factors that influence landslide occurrence,such as slope angle, aspect, curvature, elevation, flow accumulation, distance from drainages, and distance from roads were calculated from the topographic maps. Lithology, distance from seismogenic fault, distance from all faults, and distance from stratigraphic boundaries were derived from the geological maps. Normalized difference vegetation index (NDV1) was extracted from ETM+ images. Seismic intensity zoning was collected from Wenchuan (汶川) Ms8.0 Earthquake Intensity Distribution Map published by the China Earthquake Administration.Landslide hazard indices were calculated using the weight of evidence model, and landslide hazard maps were calculated from using different controlling parameters cases. The hazard map was compared with known landslide locations and verified. The success accuracy percentage of using all 13 controlling parameters was 71.82%. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low, and very low. The validation results showed satisfactory agreement between the hazard map and the existing landslides distribution data. The landslide hazard map can be used to identify and delineate unstable hazard-prone areas. It can also help planners to choose favorable locations for development schemes, such as infrastructural, buildings, road constructions, and environmental protection.
基金support from the National Natural Science Foundation of China(51175190)the Special Topic Fund of Key Science and Technology of Fujian Province(2006HZ0002-2)
文摘A new vibration type and motion characteristics were proposed according to the principle of manual sie- ving. A mechanical model of the new motion was established and the characteristics of the new vibrating screen were analyzed to establish its equation of motion by using the vibration theory, to include as tech- nological parameters, amplitude, movement velocity, and throwing index through theoretical calculation. The efficiency of particle screening was studied at different values of frequency and swing declination angle. The discrete element method (DEM) was used to simulate the screening with the swing trace. The functional relationship between screening efficiency and the parameters was fitted with the least square method. The results show that high frequency and large swing angle are suitable for small particles, while small values are suitable for particles close to the aperture size. Compared to the linear vibration trace, both screening efficiency and processing capacity were effectively improved.