The effect of Mo additions on the microstructures and mechanical properties of CoCrNi alloys was investigated,meanwhile,ab initio calculations are performed to quantitatively evaluate the lattice distortion and stacki...The effect of Mo additions on the microstructures and mechanical properties of CoCrNi alloys was investigated,meanwhile,ab initio calculations are performed to quantitatively evaluate the lattice distortion and stacking fault energy(SFE).The yield strength,ultimate tensile strength,and elongation of(CoCrNi)_(97)Mo_(3)alloy are 475 MPa,983 MPa and 69%,respectively.The yield strength is increased by~30%and high ductility is maintained,in comparison with CoCrNi alloy.Besides the nano-twins and dislocations,the higher density of stacking faults is induced during the tensile deformation for(CoCrNi)_(97)Mo_(3)alloy.Ab initio calculation results indicate the mean square atomic displacement(MSAD)and SFE value of(CoCrNi)_(97)Mo_(3)alloy is 42.6 pm^(2)and-40.4 mJ/m^(2)at 0 K,respectively.The relationship between mechanical properties and MSAD,SFE for various multiple principal element alloys is discussed.展开更多
The influences of minor Cu addition(2 and 4 at.%)on the microstructural evolution and room-temperature mechanical property of metastable Co_(35)Cr_(25)Fe_(30)Ni_(10)are systemically investigated in the present study.T...The influences of minor Cu addition(2 and 4 at.%)on the microstructural evolution and room-temperature mechanical property of metastable Co_(35)Cr_(25)Fe_(30)Ni_(10)are systemically investigated in the present study.The results indicate that the thermally induced hexagonal close-packed(HCP)phase is absent when Cu was added,due to the increase in stacking fault energy(SFE).The 2%-Cu-added alloys showed the largest total elongation of 69%among the three alloys.With the addition of Cu content reaching 4 at.%,heterogeneous grain structures composed of coarse grains(~9μm)and fine grains(~4μm)and Cu-rich precipitates near the grain boundary are observed,showing the highest yield strength.Additionally,the segregation state of Cu was quantitatively characterized by electron probe microanalysis(EPMA).And effects of Cu addition on microstructures and tensile properties of(Co_(35)Cr_(25)Fe_(30)Ni_(10))_(100-x) Cu _(x) are also discussed.The findings are beneficial to comprehensively understand the Cu-containing complex concentrated alloys.展开更多
基金supported financially by the National Natural Science Foundation of China(Nos.51701061 and 51601020)the Natural Science Foundation of Hebei Province(No.E2019202059)。
文摘The effect of Mo additions on the microstructures and mechanical properties of CoCrNi alloys was investigated,meanwhile,ab initio calculations are performed to quantitatively evaluate the lattice distortion and stacking fault energy(SFE).The yield strength,ultimate tensile strength,and elongation of(CoCrNi)_(97)Mo_(3)alloy are 475 MPa,983 MPa and 69%,respectively.The yield strength is increased by~30%and high ductility is maintained,in comparison with CoCrNi alloy.Besides the nano-twins and dislocations,the higher density of stacking faults is induced during the tensile deformation for(CoCrNi)_(97)Mo_(3)alloy.Ab initio calculation results indicate the mean square atomic displacement(MSAD)and SFE value of(CoCrNi)_(97)Mo_(3)alloy is 42.6 pm^(2)and-40.4 mJ/m^(2)at 0 K,respectively.The relationship between mechanical properties and MSAD,SFE for various multiple principal element alloys is discussed.
基金supported by the National Natural Science Foundation of China(No.51701061)the Natural Science Foundation of Hebei Province(No.E2019202059)+1 种基金the foundation strengthening program(No.2019-JCJQ-142)the Guangdong Province Key Area R&D Program(No.2020B0101340004)。
文摘The influences of minor Cu addition(2 and 4 at.%)on the microstructural evolution and room-temperature mechanical property of metastable Co_(35)Cr_(25)Fe_(30)Ni_(10)are systemically investigated in the present study.The results indicate that the thermally induced hexagonal close-packed(HCP)phase is absent when Cu was added,due to the increase in stacking fault energy(SFE).The 2%-Cu-added alloys showed the largest total elongation of 69%among the three alloys.With the addition of Cu content reaching 4 at.%,heterogeneous grain structures composed of coarse grains(~9μm)and fine grains(~4μm)and Cu-rich precipitates near the grain boundary are observed,showing the highest yield strength.Additionally,the segregation state of Cu was quantitatively characterized by electron probe microanalysis(EPMA).And effects of Cu addition on microstructures and tensile properties of(Co_(35)Cr_(25)Fe_(30)Ni_(10))_(100-x) Cu _(x) are also discussed.The findings are beneficial to comprehensively understand the Cu-containing complex concentrated alloys.