期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimating potential harvestable biomass for bioenergy from sustainably managed private native forests in Southeast Queensland, Australia
1
作者 michael r.ngugi victor j.neldner +4 位作者 sean ryan tom lewis jiaorong li phillip norman michelle mogilski 《Forest Ecosystems》 SCIE CSCD 2018年第1期62-76,共15页
Background: Australia's energy future is at the crossroads and the role of renewable sources is in focus. Biomass from sustainably managed forests provide a significant opportunity for electricity and heat generatio... Background: Australia's energy future is at the crossroads and the role of renewable sources is in focus. Biomass from sustainably managed forests provide a significant opportunity for electricity and heat generation and production of liquid fuels. Australia has extensive native forests of which a significant proportion are on private land. However, there is limited knowledge on the potential capacity of this resource to contribute to the expansion of a biomass for bioenergy industry. In addition, there are concerns on how to reconcile biomass harvesting with environmental protection. Methods: We used regional ecosystem vegetation mapping for Queensland to stratify harvestable forests within the 1.8 m hectares of private native forests present in the Southeast Queensland bioregion in 2014. We used a dataset of 52,620 individual tree measurements from 541 forest inventory plots collected over the last 10 years. Tree biomass was estimated using current biomass allometric equations for Australia. Biomass potentially available from selective sawlog harvesting and silvicultural treatment across the bioregion was calculated and mapped. Results: Current sawlog harvesting extracts 41.4% of the standing tree biomass and a biomass for bioenergy harvest would retain on average 36% of felled tree biomass on site for the protection of environmental and fauna habitat values. The estimated area extent of harvestable private native forests in the bioregion in 2013 was 888,000 ha and estimated available biomass for bioenergy in living trees was 13.6 million tonnes (t). The spotted gum (Corymbio citriodora subsp, variegata) forests were the most extensive, covering an area of 379,823 ha and with a biomass for bioenergy yield of 14.2 t-ha-1 (with approximately 11.2 t.ha-1 of the biomass harvested from silvicultural thinning and 3 t.ha-1 recovered from sawlog harvest residual). Conclusions: Silvicultural treatment of private native forests in the Southeast Queensland bioregion, has the capacity to supply a large quantity of biomass for bioenergy. The availability of a biomass for bioenergy market, and integration of sawlog harvesting and silvicultural treatment operations, could provide land owners with additional commercial incentive to improve the management of private native forests. This could potentially promote restoration of degraded forests, ecological sustainability and continued provision of wood products. 展开更多
关键词 Renewable energy Forest biomass Woody biomass Native forests Silvicultural management Biomassretention Biobased
下载PDF
Mechanism of size effects of a filler on the wear behavior of ultrahigh molecular weight polyethylene
2
作者 Huan Zhang Shicheng Zhao +4 位作者 Zhong Xin Chunlin Ye Zhi li Jincheng Xia jiaorong li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1950-1963,共14页
Although the size effects of a filler are closely related to the complex multi-level structures of their polymer composites;unfortunately,such relationships remain poorly understood.In this study,we investigated the e... Although the size effects of a filler are closely related to the complex multi-level structures of their polymer composites;unfortunately,such relationships remain poorly understood.In this study,we investigated the effects of various sizes(40-600 nm)of silicon carbide(SiC)fillers on the wear behavior of ultrahigh molecular weight polyethylene(UHMWPE)in the presence of the silane coupling agent KH-560.All of these SiC fillers improved the wear resistance of UHMWPE significantly,with a medium size(150 nm)being optimal.To examine the reasons for this behavior,we analyzed the multi-level structures of the samples in terms of their matrix structures(crystalline;amorphous;interphase),matrix-filler interactions(physical adsorption;chemical crosslinking;hybrid network)and the external effects of SiC fillers(bearing loads;transferring frictional heat).The high rigidity and thermal conductivity of SiC fillers and,more importantly,the intrinsic characteristics of the matrix structures(larger crystal grains;higher interphase;stronger amorphous entangled networks)were the key parameters affecting the enhancement in the wear-resistance of the UHMWPE.Herein,we also provide interpretations of the corresponding physical effects.Our results should improve our understanding of the structure-property relationships and,thus,should guide the formula design of UHMWPE composites. 展开更多
关键词 Ultrahigh molecular weight POLYETHYLENE Wear behavior Structure-property relationships Particle size Silicon carbide Polymer-filler interactions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部