期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
1
作者 赵佳鹏 郭勤皇 +5 位作者 尹慧中 邹锦堂 赵振杰 程文娟 蒋冬梅 詹清峰 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期479-484,共6页
The magneto-mechanical coupling effect and magnetic anisotropy of Fe10Co90(FeCo)films deposited on silicon wafer(Si),flexible polyethylene terephthalate(PET),freestanding polydimethylsiloxane(PDMS),and pre-stretched 2... The magneto-mechanical coupling effect and magnetic anisotropy of Fe10Co90(FeCo)films deposited on silicon wafer(Si),flexible polyethylene terephthalate(PET),freestanding polydimethylsiloxane(PDMS),and pre-stretched 20%PDMS substrates were studied in detail.The loop squareness ratio Mr/Ms and the coercive Hc of the FeCo film grown on a PET substrate can be obviously tuned by applying a small tensile-bending strain,and those of the FeCo film grown on a freestanding PDMS substrate can only be slightly changed when applying a relatively large tensile bending strain.For the FeCo film prepared on a 20%pre-stretched PDMS,a wrinkled morphology is obtained after removing the pre-strain.The wrinkled FeCo film can keep the magnetic properties unchanged when applying a relatively large tensile bending strain perpendicular to the wrinkles.This reveals that PDMS is an ideal substrate for magnetic films to realize flexible immutability.Our results may help for developing flexible magnetic devices. 展开更多
关键词 flexible substrates FeCo films magnetic anisotropy magneto-mechanical coupling effect
下载PDF
Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding 被引量:12
2
作者 jiapeng zhao Yiwen E +2 位作者 Kaia Williams Xi-Cheng Zhang Robert W.Boyd 《Light(Science & Applications)》 SCIE EI CAS CSCD 2019年第1期680-687,共8页
Recently,computational sampling methods have been implemented to spatially characterize terahertz(THz)fields.Previous methods usually rely on either specialized THz devices such as THz spatial light modulators or comp... Recently,computational sampling methods have been implemented to spatially characterize terahertz(THz)fields.Previous methods usually rely on either specialized THz devices such as THz spatial light modulators or complicated systems requiring assistance from photon-excited free carriers with high-speed synchronization among multiple optical beams.Here,by spatially encoding an 800-nm near-infrared(NIR)probe beam through the use of an optical SLM,we demonstrate a simple sampling approach that can probe THz fields with a single-pixel camera.This design does not require any dedicated THz devices,semiconductors or nanofilms to modulate THz fields.Using computational algorithms,we successfully measure 128×128 field distributions with a 62-μm transverse spatial resolution,which is 15 times smaller than the central wavelength of the THz signal(940μm).Benefitting from the noninvasive nature of THz radiation and sub-wavelength resolution of our system,this simple approach can be used in applications such as biomedical sensing,inspection of flaws in industrial products,and so on. 展开更多
关键词 SYNCHRONIZATION beam spatially
原文传递
Single-End Adaptive Optics Compensation for Emulated Turbulence in a Bi-Directional 10-Mbit/s per Channel Free-Space Quantum Communication Link Using Orbital-Angular-Momentum Encoding 被引量:3
3
作者 Cong Liu Kai Pang +17 位作者 Zhe zhao Peicheng Liao Runzhou Zhang Haoqian Song Yinwen Cao Jing Du Long Li Hao Song Yongxiong Ren Guodong Xie Yifan zhao jiapeng zhao Seyed M.H.Rafsanjani Ari N.Willner Jeffrey H.Shapiro Robert W.Boyd Moshe Tur Alan E.Willner 《Research》 EI CAS 2019年第1期1134-1143,共10页
A single-end adaptive-optics(AO)module is experimentally demonstrated to mitigate the emulated atmospheric turbulence efects in a bi-directional quantum communication link,which employs orbital angular momentum(OAM)fo... A single-end adaptive-optics(AO)module is experimentally demonstrated to mitigate the emulated atmospheric turbulence efects in a bi-directional quantum communication link,which employs orbital angular momentum(OAM)for data encoding.A classical Gaussian beam is used as a probe to detect the turbulence-induced wavefront distortion in the forward direction of the link.Based on the detected wavefront distortion,an AO system located on one end of the link is used to simultaneously compensate for the forward and backward channels.Specifcally,with emulated turbulence and when the probe is turned on,the mode purity of photons carrying OAMℓ=1 is improved by∼21%with AO mitigation.We also measured the performance when encoding data using OAM{ℓ=−1,+2}and{ℓ=−2,+1}in the forward and backward channels,respectively,at 10 Mbit/s per channel with one photon per pulse on average.For this case,we found that the AO system could reduce the turbulence efects increased quantum-symbolerror-rate(QSER)by∼76%and∼74%,for both channels in the uni-directional and bi-directional cases,respectively.Similar QSER improvement is observed for the opposite direction channels in the bi-directional case. 展开更多
关键词 TURBULENCE directional BACKWARD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部