Poor oocyte quality is associated with early embryo developmental arrest and infertility.Maternal gene plays crucial roles in the regulation of oocyte maturation,and its mutation is a common cause of female infertilit...Poor oocyte quality is associated with early embryo developmental arrest and infertility.Maternal gene plays crucial roles in the regulation of oocyte maturation,and its mutation is a common cause of female infertility.However,how to improve oocyte quality and develop effective therapy for maternal gene mutation remains elusive.Here,we use Zar1 as an example to assess the feasibility of genome transfer to cure maternal gene mutationecaused female infertility.We first discover that cytoplasmic deficiency primarily leads to Zar1-null embryo developmental arrest by disturbing maternal transcript degradation and minor zygotic genome activation(ZGA)during the maternal-zygotic transition.We next perform genome transfer at the oocyte(spindle transfer or polar body transfer)and zygote(early pronuclear transfer or late pronuclear transfer)stages to validate the feasibility of preventing Zar1 mutationecaused infertility.We finally demonstrate that genome transfer either at the oocyte or at the early pronuclear stage can support normal preimplantation embryo development and produce live offspring.Moreover,those pups grow to adulthood and show normal fertility.Therefore,our findings provide an effective basis of therapies for the treatment of female infertility caused by maternal gene mutation.展开更多
基金primarily supported by the Ministry of Science and Technology of the People’s Republic of China(2017YFA0102602,2016YFA0100400)supported by the National Natural Science Foundation of China(81630035,31871448,31721003)+3 种基金the Shanghai Subject Chief Scientist Program(15XD1503500)Supporting Project of Medical Guidance(Western Medicine)of Science and Technology Commission of Shanghai Municipality(15411964600)Merck Serono China Research Fund for Fertility Experts,the Shanghai municipal medical and health discipline construction projects(2017ZZ02015)the Fundamental Research Funds for the Central Universities(1515219049)。
文摘Poor oocyte quality is associated with early embryo developmental arrest and infertility.Maternal gene plays crucial roles in the regulation of oocyte maturation,and its mutation is a common cause of female infertility.However,how to improve oocyte quality and develop effective therapy for maternal gene mutation remains elusive.Here,we use Zar1 as an example to assess the feasibility of genome transfer to cure maternal gene mutationecaused female infertility.We first discover that cytoplasmic deficiency primarily leads to Zar1-null embryo developmental arrest by disturbing maternal transcript degradation and minor zygotic genome activation(ZGA)during the maternal-zygotic transition.We next perform genome transfer at the oocyte(spindle transfer or polar body transfer)and zygote(early pronuclear transfer or late pronuclear transfer)stages to validate the feasibility of preventing Zar1 mutationecaused infertility.We finally demonstrate that genome transfer either at the oocyte or at the early pronuclear stage can support normal preimplantation embryo development and produce live offspring.Moreover,those pups grow to adulthood and show normal fertility.Therefore,our findings provide an effective basis of therapies for the treatment of female infertility caused by maternal gene mutation.