期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
共价有机框架材料在质子交换膜中的应用
1
作者 张炜煜 李杰 +3 位作者 李红 姬佳奇 宫琛亮 丁三元 《化学进展》 SCIE CAS CSCD 北大核心 2024年第1期48-66,共19页
共价有机框架(COFs)作为一种新型有机多孔材料,具有高度结晶性、有序的多孔排列、功能可修饰性、结构可调性以及较高稳定性。COFs规整的孔道可以容纳多种质子载流子和质子供体,构建连续稳定的质子传输通道,在含水质子传导与无水质子传... 共价有机框架(COFs)作为一种新型有机多孔材料,具有高度结晶性、有序的多孔排列、功能可修饰性、结构可调性以及较高稳定性。COFs规整的孔道可以容纳多种质子载流子和质子供体,构建连续稳定的质子传输通道,在含水质子传导与无水质子传导中均发挥巨大的作用,将COFs应用到质子交换膜领域具有重要的研究意义和价值。本文分别从COFs作为低温燃料电池质子交换膜和高温燃料电池质子交换膜两方面,总结了COFs固态电解质膜、COFs与高分子基质复合膜、COFs自支撑膜等不同种类质子交换膜的特点以及提高COFs质子交换膜性能的改性方法,综述了近年来COFs在燃料电池质子交换膜领域的相关代表性研究。最后,对COFs质子交换膜的应用前景进行了讨论与展望。 展开更多
关键词 共价有机框架 质子交换膜 质子传导
原文传递
Automatic classification of rural building characteristics using deep learning methods on oblique photography 被引量:2
2
作者 Chengyu Meng Yuwei Song +4 位作者 jiaqi ji Ziyu jia Zhengxu Zhou Peng Gao Sunxiangyu Liu 《Building Simulation》 SCIE EI CSCD 2022年第6期1161-1174,共14页
Rural building is important to the well-being of rural residents,leading to a significant need to carry out extensive surveys and retrofits of many rural buildings.On-site surveys by expert surveyors are currently the... Rural building is important to the well-being of rural residents,leading to a significant need to carry out extensive surveys and retrofits of many rural buildings.On-site surveys by expert surveyors are currently the main approach,but this traditional method is often expensive and laborious,especially for large-scale survey tasks.Therefore,this study explores an alternative workflow based on deep learning(DL)methods to apply automatic classification of rural building characteristics.Taking four villages in Jizhou District of Tianjin,China as research samples,we tested selected convolutional neural network(CNN)architectures through the establishment of the training database containing 3258 labeled images,under the performance metrics of accuracy,recall and F1 score.The results showed that ResNet50 is the CNN architecture with the best performance,with the comprehensive consideration of overall metrics.Taking accuracy as the performance metric to test the generalization ability of ResNet50,the prediction results for seven building characteristic indicators from low to high are as follows:building function(0.827);building style(0.863);building quality(0.871);building age(0.880);building structure(0.891);abandoned or not(0.959);the number of storeys(0.995).Due to simplicity,accuracy and effectiveness,this workflow is transferable and cost-effective to investigate large-scale villages. 展开更多
关键词 rural building surveys built environment WORKFLOW convolutional neural networks ResNet50
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部