期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
生物基聚2,5-呋喃二甲酸乙二醇酯的改性及纺丝技术进展
1
作者 刘嘉铨 郭熙桃 +1 位作者 邱志明 严玉蓉 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2023年第2期184-190,共7页
采用生物基芳香单体2,5-呋喃二甲酸替代石油基单体TPA制备所得生物基聚2,5-呋喃二甲酸乙二醇酯(PEF),是石油基聚对苯二甲酸乙二醇酯(PET)最引人注目的替代品。由PEF制备所得纤维的拉伸强度和弹性模量均高于PET,但其结晶速率、韧性远低于... 采用生物基芳香单体2,5-呋喃二甲酸替代石油基单体TPA制备所得生物基聚2,5-呋喃二甲酸乙二醇酯(PEF),是石油基聚对苯二甲酸乙二醇酯(PET)最引人注目的替代品。由PEF制备所得纤维的拉伸强度和弹性模量均高于PET,但其结晶速率、韧性远低于PET,从而限制了其在纺织领域的产业化应用。文中介绍了PEF改性的几种方法,包括通过共聚柔性链段或对称刚性结构的二元酸或二元醇单体实现分子结构设计、与柔性主链聚合物熔融共混以改善PEF韧性,以及通过添加无机或有机成核剂改进PEF的结晶性能,并概述了PEF纺丝技术的现状。 展开更多
关键词 生物基材料 聚2 5-呋喃二甲酸乙二醇酯 增韧 结晶 纺丝
下载PDF
SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATION IN R^n 被引量:1
2
作者 Xiangqing liu Yuxia GUO jiaquan liu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第4期597-613,共17页
In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, ... In this paper, the authors study the existence and non-existence of positive solutions for singular p-Laplacian equation --Δpu=f(x)u^-α + λg(x)u^β in RN, where N ≥3, 1 〈 p 〈 N, λ〉 0, 0 〈 α〈 1,max(p, 2) 〈 β+ 1 〈 p* = Np/N-p We prove that there exists a critical value A such that the problem has at least two solutions if 0 〈 λ 〈 A; at least one solution if λ= A; and no solutions if λ〉A. 展开更多
关键词 Positive solutions singular p-Laplacian equations.
原文传递
Multiple Sign-Changing Solutions for Quasilinear Equations of Bounded Quasilinearity
3
作者 jiaquan liu Xiangqing liu Zhi-Qiang Wang 《Analysis in Theory and Applications》 CSCD 2021年第2期209-229,共21页
The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity ■on aΩ ,where... The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity ■on aΩ ,where Ω∈ C RN is a bounded domain with smooth boundary,and we use du 2u d D;u=x,Dju=;dxjdxj and D2bj;(z)=;bj(2).The main interest of this paper is for the case of bounded quasilinearity bj.The result is proved by an elliptic regularization method involving truncations of both u and the gradient of u. 展开更多
关键词 Quasilinear elliptic equations sign-changing solution an elliptic regularization method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部