期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermal stability improvement and microstructure optimization of high cobalt content Nd-Fe-B magnets via terbium grain boundary diffusion
1
作者 Jiyuan Xu Ruiyang Meng +5 位作者 Jing Liu jiateng zhang Rui Han Yikun Fang Shengzhi Dong Wei Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第8期1531-1538,I0004,共9页
The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain b... The substitution of Fe by Co in the 2:14:1 phase is an effective method to increase the Curie temperature and enhance the thermal stability of the Nd-Fe-B magnets.However,the accumulation of Co ele ment at the grain boundaries(GBs) changes the GBs from nonmagnetic to ferromagnetic and causes the thinlayer GBs to become rare,In this paper,the method of diffusing Tb element was chosen to improve the microstructure and temperature stability of high-Co magnets.Three original sintered Nd_(28.5)Dy_(3)-CO_(x)e_(bal)M_(0.6)B_(i)(x=0,6 wt%,12 wt%;M = Cu,Al,Zr) magnets with different Co contents were diffused with Tb by grain boundary diffusion(GBD).After GBD,high-Co magnets exhibit more continuously distributed thin-layer GBs,and their thermal stability is significantly improved.In high-Co magnets(x=6 wt%),the absolute value of the temperature coefficient of coercivity decreases from 0.603%/K to0.508%/K in the temperature range of 293-413 K,that of remanence decreases from 0.099%/K to 0.091%/K,and the coercivity increases from 18.44 to 25.04 kOe.Transmission electron microscopy(TEM)characterization reveals that there are both the 1:2 phase and the amorphous phase in the high-Co magnet before and after GBD,EDS elemental analysis shows that Tb element is more likely to preferentially replace the rare earth elements in the 2:14:1 main phase than in the 1:2 phase and the amorphous phase.The concentration of Tb at the edge of the main phase is much higher than that in the 1:2phase and amorphous phase,which is beneficial to the improvement of the microstructure.The preferential replacement of Tb elements at the edge of the 2:14:1 phase and thin-layer GBs with a more continuous distribution are synergistically responsible for improving the thermal stability of high-Co magnets.The study indicates that GBD is an effective method to improve the microstructure and thermal stability of high-Co magnets. 展开更多
关键词 Nd-Fe-B magnets COERCIVITY Grain boundary diffusion Thermal stability Micro structure Rare earths
原文传递
Geometric error analysis of an over-constrained parallel tracking mechanism using the screw theory 被引量:2
2
作者 jiateng zhang Binbin LIAN Yimin SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1541-1554,共14页
This paper deals with geometric error modeling and sensitivity analysis of an overconstrained parallel tracking mechanism. The main contribution is the consideration of overconstrained features that are usually ignore... This paper deals with geometric error modeling and sensitivity analysis of an overconstrained parallel tracking mechanism. The main contribution is the consideration of overconstrained features that are usually ignored in previous research. The reciprocal property between a motion and a force is applied to tackle this problem in the framework of the screw theory. First of all, a nominal kinematic model of the parallel tracking mechanism is formulated. On this basis, the actual twist of the moving platform is computed through the superposition of the joint twist and geometric errors. The actuation and constrained wrenches of each limb are applied to exclude the joint displacement. After eliminating repeated errors brought by the multiplication of wrenches, a geometric error model of the parallel tracking mechanism is built. Furthermore,two sensitivity indices are defined to select essential geometric errors for future kinematic calibration. Finally, the geometric error model with minimum geometric errors is verified by simulation with SolidWorks software. Two typical poses of the parallel tracking mechanism are selected, and the differences between simulation and calculation results are very small. The results confirm the correctness and accuracy of the geometric error modeling method for over-constrained parallel mechanisms. 展开更多
关键词 ERROR model simulation GEOMETRIC ERROR modeling Over-constrained PARALLEL MECHANISM Screw theory Sensitivity analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部