Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ...Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ultrasonic transducers(CMUTs)are promising tools for developing miniaturized highperformance biosensing complementary metal–oxide–silicon(CMOS)platforms.However,their operability is limited by inefficient functionalization,aggregation,crosstalk in the buffer,and the requirement for an external high-voltage(HV)power supply.In this study,we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity.The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis.Improved selectivity for onchip hybridization was demonstrated by comparing complementary and non-complementary singlestranded DNA oligonucleotides using fluorescence imaging technology.The sensor array was further characterized using a five-element lumped equivalent model.The 4 mm^(2) application-specific integrated circuit chip was designed and developed through 0.18 lm HV bipolar-CMOS-double diffused metal–oxide–silicon(DMOS)technology(BCD)to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply,with a total power consumption of 3.8 mW in a continuous mode.The measured results indicated a detection sensitivity of 7.943×10^(-3) lmol·L^(-1)·Hz^(-1) over a concentration range of 1 to 100 lmol·L^(-1).In conclusion,the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier.Moreover,ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes,which has never been attempted thus far on CMUTs,to enhance the selectivity of bio-functionalization.The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.展开更多
Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’...Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’s climate in terms of the production of sea ice and high-salinity shelf water.In this study,we investigated the relationship between the area of the Terra Nova Bay polynya and the air temperature as well as the eastward and northward wind based on the ERA5 and ERAInterim reanalysis datasets and observations from automatic weather stations during the polar night.We examined the correlation between each factor and the polynya area under different temperature conditions.Previous studies have focused more on the effect of winds on the polynya,but the relationship between air temperature and the polynya area has not been fully investigated.Our study shows,eliminating the influence of winds,lower air temperature has a stronger positive correlation with the polynya area.The results show that the relationship between the polynya area and air temperature is more likely to be interactively influenced.As temperature drops,the relationship of the polynya area with air temperature becomes closer with increasing correlation coefficients.In the low temperature conditions,the correlation coefficients of the polynya area with air temperature are above 0.5,larger than that with the wind speed.展开更多
The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scann...The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scanning electron microscope(SEM),X-ray Diffraction(XRD)and potentiodynamic polarization tests.The corrosion degree of Mg–7Gd–5Y–1Nd–0.5Zr alloys in Ca(NO_(3))_(2)salt spray was very shallow by corrosion morphology and the corrosion route was extended along the surface in texture-like shape,while the alloy in NaCl and(NH4)_(2)SO_(4)salt spray were major local corrosion and there were serious corrosion pits on the surface.The weight loss rates in(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray was respectively 0.4147,0.1618 and 0.0725 mg/(cm2 d−1).The results of residual mechanical properties indicated that the corrosion order in salts spray of Mg–7Gd–5Y–1Nd–0.5Zr alloys is NH4SO4>NaCl>Ca(NO_(3))_(2),which was consistent with the results of potentiodynamic polarization tests.The type of the salts will play a vital role in the initiation of the corrosion of EW75 alloy when they are used in the atmosphere environments.Inorganic salts with the smaller PH value after dissolution will have a stronger impact on the corrosion of EW75 magnesium alloys.展开更多
Cracking failure of cement-treated base(CTB)has always been the concern of highway constructors.Mesoscale cracking analysis is an important means to study the damage degradation mechanism,which is difficult to be char...Cracking failure of cement-treated base(CTB)has always been the concern of highway constructors.Mesoscale cracking analysis is an important means to study the damage degradation mechanism,which is difficult to be characterized by experimental techniques alone.The objective of this paper is to develop a random aggregate modelling method to simulate the mesoscopic cracking of CTB material.A minimum rectangle area method was proposed to calculate the polygon aggregate size,which is closer to the sieving analysis than the average radius method.A buffer zone method was proposed to determine the distance between randomly generated polygon aggregates.Based on the proposed random algorithm,finite element method(FEM)was adopted to build the mesoscopic model of CTB including aggregate,mortar,interfacial transition zone(ITZ)and air voids.Laboratory tests were conducted to validate the numerical model.Then the sensitivity analyses were conducted to study the influencing factors on cracking behavior.The simulation results indicate that the higher aggregate content and the finer gradation lead to the increase of ITZ,thus reducing the cracking resistance of the CTB material.Low porosity content is able to significantly reduce the stress concentration and thus improves the cracking resistance.The research results of this paper could be used to guide the crack resistant design of CTB material.展开更多
Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical p...Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical parts,multi-direction forging(MDF)was introduced before back extrusion,and the microstructure and mechanical properties were investigated.Results of microstructure show that the grain size in the outer of the cylindrical bottom is refined from 30.1 to 27.7μm,the micro structure is more uniform and the dislocation density is higher.The bimodal grain structure is formed in the outer of the cylindrical wall,which is ascribed to the formation of MgsRE phases along grain boundaries.These phases result in the Zener pinning effect on grain boundaries and the reduction of DRX volume fraction.The texture type of the cylindrical bottom is<0001>‖ED and the cylindrical wall is<1010>‖ED,and the maximum pole intensity is 1.986 and 1.664,respectively.Results of the tensile test at room temperature show that combined improved strength and ductility of the cylindrical part is attained after introducing the MDF process.The ultimate tensile strength(UTS),yield strength(YS)and elongation are279 MPa,185 MPa and 12%at the bottom and 299 MPa,212 MPa and 20%at the wall.展开更多
Background:Textbook outcome(TO)can guide decision-making among patients and clinicians during preoperative patient selection and postoperative quality improvement.We explored the factors associated with achieving a TO...Background:Textbook outcome(TO)can guide decision-making among patients and clinicians during preoperative patient selection and postoperative quality improvement.We explored the factors associated with achieving a TO for gallbladder carcinoma(GBC)after curative-intent resection and analyzed the effect of adjuvant chemotherapy(ACT)on TO and non-TO patients.Methods:A total of 540 patients who underwent curative-intent resection for GBC at the Department of Hepatobiliary Surgery of the First Affiliated Hospital of Xi’an Jiaotong University from January 2011 to December 2020 were retrospectively analyzed.Multivariable logistic regression was used to investigate the factors associated with TO.Results:Among 540 patients with GBC who underwent curative-intent resection,223 patients(41.3%)achieved a TO.The incidence of TO ranged from 19.0%to 51.0%across the study period,with a slightly increasing trend over the study period.The multivariate analysis showed that non-TO was an independent risk factor for prognosis among GBC patients after resection(P=0.003).Age≤60 years(P=0.016),total bilirubin(TBIL)level≤34.1 mmol/L(P<0.001),well-differentiated tumor(P=0.008),no liver involvement(P<0.001),and T1-2 stage disease(P=0.006)were independently associated with achieving a TO for GBC after resection.Before and after propensity score matching(PSM),the overall survival outcomes of non-TO GBC patients who received ACT and those who did not were statistically significant;ACT improved the prognosis of patients in the non-TO group(P<0.05).Conclusion:Achieving a TO is associated with a better long-term prognosis among GBC patients after curative-intent resection,and ACT can improve the prognosis of those with non-TO.展开更多
Flat optics has been considered promising for constructions of spaceborne imaging systems with apertures in excess of 10 m.Despite recent advances,there are long-existing challenges to perform in-phase stitching of mu...Flat optics has been considered promising for constructions of spaceborne imaging systems with apertures in excess of 10 m.Despite recent advances,there are long-existing challenges to perform in-phase stitching of multiple flat optical elements.Phasing the segmented planar instrument has remained at the proof of concept.Here,we achieve autonomous system-level cophasing of a 1.5-m stitching flat device,bridging the gap between the concept and engineering implementation.To do so,we propose a flat element stitching scheme,by manipulating the point spread function,which enables our demonstration of automatically bringing seven flat segments'tip/tilt and piston errors within the tolerance.With phasing done,the 1.5-m system has become the largest phased planar instrument ever built in the world,to our knowledge.The first demonstration of phasing the large practical flat imaging system marks a significant step towards fielding a 10-m class one in space,also paving the way for ultrathin flat imaging in various remote applications.展开更多
Ultrasonic fluid bubble detection is important in industrial controls,aerospace systems and clinical medicine because it can prevent fatal mechanical failures and threats to life.However,current ultrasonic technologie...Ultrasonic fluid bubble detection is important in industrial controls,aerospace systems and clinical medicine because it can prevent fatal mechanical failures and threats to life.However,current ultrasonic technologies for bubble detection are based on conventional bulk PZT-based transducers,which suffer from large size,high power consumption and poor integration with ICs and thus are unable to implement real-time and long-term monitoring in tight physical spaces,such as in extracorporeal membrane oxygenation(ECMO)systems and dialysis machines or hydraulic systems in aircraft.This work highlights the prospect of capacitive micromachined ultrasonic transducers(CMUTs)in the aforementioned application situations based on the mechanism of received voltage variation caused by bubble-induced acoustic energy attenuation.The corresponding theories are established and well validated using finite element simulations.The fluid bubbles inside a pipe with a diameter as small as 8 mm are successfully measured using our fabricated CMUT chips with a resonant frequency of 1.1 MHz.The received voltage variation increases significantly with increasing bubble radii in the range of 0.5–2.5 mm.Further studies show that other factors,such as bubble positions,flow velocities,fluid medium types,pipe thicknesses and diameters,have negligible effects on fluid bubble measurement,demonstrating the feasibility and robustness of the CMUT-based ultrasonic bubble detection technique.展开更多
Pipe contaminant detection holds considerable importance within various industries,such as the aviation,maritime,medicine,and other pertinent fields.This capability is beneficial for forecasting equipment potential fa...Pipe contaminant detection holds considerable importance within various industries,such as the aviation,maritime,medicine,and other pertinent fields.This capability is beneficial for forecasting equipment potential failures,ascertaining operational situations,timely maintenance,and lifespan prediction.However,the majority of existing methods operate offline,and the detectable parameters online are relatively singular.This constraint hampers real-time on-site detection and comprehensive assessments of equipment status.To address these challenges,this paper proposes a sensing method that integrates an ultrasonic unit and an electromagnetic inductive unit for the real-time detection of diverse contaminants and flow rates within a pipeline.The ultrasonic unit comprises a flexible transducer patch fabricated through micromachining technology,which can not only make installation easier but also focus the sound field.Moreover,the sensing unit incorporates three symmetrical solenoid coils.Through a comprehensive analysis of ultrasonic and induction signals,the proposed method can be used to effectively discriminate magnetic metal particles(e.g.,iron),nonmagnetic metal particles(e.g.,copper),nonmetallic particles(e.g.,ceramics),and bubbles.This inclusive categorization encompasses nearly all types of contaminants that may be present in a pipeline.Furthermore,the fluid velocity can be determined through the ultrasonic Doppler frequency shift.The efficacy of the proposed detection principle has been validated by mathematical models and finite element simulations.Various contaminants with diverse velocities were systematically tested within a 14mm diameter pipe.The experimental results demonstrate that the proposed sensor can effectively detect contaminants within the 0.5−3mm range,accurately distinguish contaminant types,and measure flow velocity.展开更多
The effects of minor Zn(0.2 at%,0.4 at%,0.6 at%) on the microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.15 Zr(at%) alloys were systematically explored.Results reveal that increasing Zn content leads to ...The effects of minor Zn(0.2 at%,0.4 at%,0.6 at%) on the microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.15 Zr(at%) alloys were systematically explored.Results reveal that increasing Zn content leads to the increase of the intergranular phases and the change of their composition from Mg24(Gd,Y)5 phase and(Mg,Zn)3(Gd,Y) phase to 18 R-LPSO phase and(Mg,Zn)3(Gd,Y) phase.Mg24(Gd,Y)5 phase is body-centered cubic structure and shares the same lattice constant with Mg24Y5 while(Mg,Zn)3(Gd,Y)phase is face-centered cubic structure with lattice constant of 0.72 nm,slightly lower than Mg3Gd.18RLPSO structure is identified to be monoclinic with c-axis not strictly vertical to the bottom surface but93.5°.The growth patterns of intergranular phases change from the divorced growth to coupled growth as compositions change.Moreover,the mechanical performance improves with Zn rising,ascribed to the decrease of brittle phases at grain boundaries and the increase of LPSO structure phases.展开更多
In this research,the microstructure evolution,mechanical properties,and creep mechanisms of Mg-12 Gd-1 MM-0.6 Zr(wt%)alloy under different conditions were systematically studied using scanning electron microscopy(SEM)...In this research,the microstructure evolution,mechanical properties,and creep mechanisms of Mg-12 Gd-1 MM-0.6 Zr(wt%)alloy under different conditions were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and tensile creep tests.Regarding the microstructure of the as-cast sample,the average grain size is about 42μm,and the eutectic compounds were determined to be Mg_(5)(Gd_(0.8)MM_(0.2)).During homogenization,these eutectic compounds gradually dissolve,and Mg_(12)MM particles are precipitated.During hot extrusion,complete dynamic recrystallization(DRX)occurs,resulting in equiaxial grains with an average grain size of about 12μm and the formation of streamlines consisting of Mg_(12)MM particles along the extrusion direction(ED).After T5 treatment(225℃for 7 h),a large number ofβ'(Mg_(7)Gd)phases are precipitated on the{11-20}αhabit plane and are interconnected,forming an interlaced network structure.The ultimate tensile strength(R_(m)=405 MPa)and yield strength(R_(P0.2)=288 MPa)of the T5 sample are significantly higher than those of the as-extruded sample(R_(m)=289 MPa,R_(P0.2)=185 MPa),but the elongation(A=4%)was remarkably lower than that of the as-extruded sample(A=18%).When crept at225℃under 100 MPa,the steady-state creep rates of the as-cast,as-extruded,and T5 samples are1.59×10^(-8),1.08×10^(-8),and 1.40×10^(-8)s^(-1),respectively,and their total strains within 100 h are respectively breaking,0.81%,and 0.92%,indicating that the as-extruded alloy exhibits the best creep resistance.TEM analysis reveals that,during the creep process of the T5 sample,theβ'particles coarsen and the precipitate-free zones(PFZs)widen,which increase the steady-state creep rate and the total strain within 100 h as compared with the as-extruded sample.展开更多
To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates ...To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates of 0.001-1 s^(-1),and a deformation degree of 60%.Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate.The true stress-true strain curves are corrected by correcting the effect of temperature rise in the deformation process.Activation energy,Q,equal to 287380 J/mol and material constant,n,equal to 4.59 were calculated by fitting the true stress-true strain curves.Then,the constitutive equation was established and verified via finite element simulation.Results of the hot processing map show that the probability of material instability increases with the degree of deformation,which indicates that the material is not suitable for large deformation in a single pass.On the whole,the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s-1,respectively.展开更多
A three-dimensional finite element dynamic simulation platform of the ground source heat pump system(GSHPS)is established.According to the outlet temperature of ground heat exchangers(GHEs)required by the code in summ...A three-dimensional finite element dynamic simulation platform of the ground source heat pump system(GSHPS)is established.According to the outlet temperature of ground heat exchangers(GHEs)required by the code in summer and winter,the calculated minimum buried depth of GHEs meeting the requirements is 60 m,when the number of borehole is 9.By using the established platform,the annual operation performance and cost of the GSHPS under different buried pipe depths are studied.The results show that the deeper the buried depth of GHEs is,the better the heat exchange effect of GHEs is.Compared with the GHEs with 60 m buried depth,when the buried depth of GHEs is 65 m,70 m,75 m and 80 m,the average coefficient of performance(COP)of the unit increases by 4.1%,6.3%,7.7%and 8.2%in cooling period and 1.0%,1.6%,1.8%and 1.9%in heating period,respectively.Considering the performance and initial investment of the GHSPS comprehensively,the optimal buried depth of GHEs is 60 m.However,considering the performance the system and the total cost of the system running for 20 years comprehensively,the optimal buried depth of GHEs is 70 m.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3205400)the National Natural Science Foundation of China(52275570)+1 种基金the Postdoctoral Innovation Talents Support Program(BX20230288)the Postdoctoral Science Foundation of Shaanxi Province(2018BSHEDZZ08).
文摘Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-ofcare applications,enabling label-free detection of biomarkers such as DNA and antibodies.Capacitive micromachined ultrasonic transducers(CMUTs)are promising tools for developing miniaturized highperformance biosensing complementary metal–oxide–silicon(CMOS)platforms.However,their operability is limited by inefficient functionalization,aggregation,crosstalk in the buffer,and the requirement for an external high-voltage(HV)power supply.In this study,we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity.The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis.Improved selectivity for onchip hybridization was demonstrated by comparing complementary and non-complementary singlestranded DNA oligonucleotides using fluorescence imaging technology.The sensor array was further characterized using a five-element lumped equivalent model.The 4 mm^(2) application-specific integrated circuit chip was designed and developed through 0.18 lm HV bipolar-CMOS-double diffused metal–oxide–silicon(DMOS)technology(BCD)to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply,with a total power consumption of 3.8 mW in a continuous mode.The measured results indicated a detection sensitivity of 7.943×10^(-3) lmol·L^(-1)·Hz^(-1) over a concentration range of 1 to 100 lmol·L^(-1).In conclusion,the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier.Moreover,ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes,which has never been attempted thus far on CMUTs,to enhance the selectivity of bio-functionalization.The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.
基金the National Natural Science Foundation of China(Grant No.41830536,Grant No.41676190,and Grant No.41941009)the Fundamental Research Funds for the Central Universities(Grant No.12500-312231103)The authors thank the University of Bremen for providing the AMSR-E,AMSR-2 and SSMIS SIC data,as well as the University of Wisconsin-Madison Automatic Weather Station Program(NSF Grant No.ANT-1543305)。
文摘Antarctic polynyas play an important role in regional atmosphere?ice?ocean interactions and are considered to help generate the global deep ocean conveyer belt.Polynyas therefore have a potential impact on the Earth’s climate in terms of the production of sea ice and high-salinity shelf water.In this study,we investigated the relationship between the area of the Terra Nova Bay polynya and the air temperature as well as the eastward and northward wind based on the ERA5 and ERAInterim reanalysis datasets and observations from automatic weather stations during the polar night.We examined the correlation between each factor and the polynya area under different temperature conditions.Previous studies have focused more on the effect of winds on the polynya,but the relationship between air temperature and the polynya area has not been fully investigated.Our study shows,eliminating the influence of winds,lower air temperature has a stronger positive correlation with the polynya area.The results show that the relationship between the polynya area and air temperature is more likely to be interactively influenced.As temperature drops,the relationship of the polynya area with air temperature becomes closer with increasing correlation coefficients.In the low temperature conditions,the correlation coefficients of the polynya area with air temperature are above 0.5,larger than that with the wind speed.
基金Foundation item:National Natural Science Foundation of China(No.51204020)National Basic Research Program of China(No.2013CB632202,No.2013CB632205).
文摘The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloys after T5 treatment under(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray condition were investigated by weight loss rates,residual mechanical properties,scanning electron microscope(SEM),X-ray Diffraction(XRD)and potentiodynamic polarization tests.The corrosion degree of Mg–7Gd–5Y–1Nd–0.5Zr alloys in Ca(NO_(3))_(2)salt spray was very shallow by corrosion morphology and the corrosion route was extended along the surface in texture-like shape,while the alloy in NaCl and(NH4)_(2)SO_(4)salt spray were major local corrosion and there were serious corrosion pits on the surface.The weight loss rates in(NH4)_(2)SO_(4),NaCl and Ca(NO_(3))_(2)salt spray was respectively 0.4147,0.1618 and 0.0725 mg/(cm2 d−1).The results of residual mechanical properties indicated that the corrosion order in salts spray of Mg–7Gd–5Y–1Nd–0.5Zr alloys is NH4SO4>NaCl>Ca(NO_(3))_(2),which was consistent with the results of potentiodynamic polarization tests.The type of the salts will play a vital role in the initiation of the corrosion of EW75 alloy when they are used in the atmosphere environments.Inorganic salts with the smaller PH value after dissolution will have a stronger impact on the corrosion of EW75 magnesium alloys.
基金This work was supported in part by the National Natural Science Foundation of China under Grants No.51978163 and 52208439the Jiangsu Nature Science Foundation under Grant No.BK20200468.
文摘Cracking failure of cement-treated base(CTB)has always been the concern of highway constructors.Mesoscale cracking analysis is an important means to study the damage degradation mechanism,which is difficult to be characterized by experimental techniques alone.The objective of this paper is to develop a random aggregate modelling method to simulate the mesoscopic cracking of CTB material.A minimum rectangle area method was proposed to calculate the polygon aggregate size,which is closer to the sieving analysis than the average radius method.A buffer zone method was proposed to determine the distance between randomly generated polygon aggregates.Based on the proposed random algorithm,finite element method(FEM)was adopted to build the mesoscopic model of CTB including aggregate,mortar,interfacial transition zone(ITZ)and air voids.Laboratory tests were conducted to validate the numerical model.Then the sensitivity analyses were conducted to study the influencing factors on cracking behavior.The simulation results indicate that the higher aggregate content and the finer gradation lead to the increase of ITZ,thus reducing the cracking resistance of the CTB material.Low porosity content is able to significantly reduce the stress concentration and thus improves the cracking resistance.The research results of this paper could be used to guide the crack resistant design of CTB material.
基金Project supported by the General Program of National Natural Science Foundation of China(51871195,51501015)。
文摘Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical parts,multi-direction forging(MDF)was introduced before back extrusion,and the microstructure and mechanical properties were investigated.Results of microstructure show that the grain size in the outer of the cylindrical bottom is refined from 30.1 to 27.7μm,the micro structure is more uniform and the dislocation density is higher.The bimodal grain structure is formed in the outer of the cylindrical wall,which is ascribed to the formation of MgsRE phases along grain boundaries.These phases result in the Zener pinning effect on grain boundaries and the reduction of DRX volume fraction.The texture type of the cylindrical bottom is<0001>‖ED and the cylindrical wall is<1010>‖ED,and the maximum pole intensity is 1.986 and 1.664,respectively.Results of the tensile test at room temperature show that combined improved strength and ductility of the cylindrical part is attained after introducing the MDF process.The ultimate tensile strength(UTS),yield strength(YS)and elongation are279 MPa,185 MPa and 12%at the bottom and 299 MPa,212 MPa and 20%at the wall.
基金supported by grants from the National Natural Science Foundation of China(No.62076194)the Key Research and Development Program of Shaanxi Province(Nos.2021-SF-016,2022-SF-410,and 2022-SF-606)+1 种基金the Central University Basic Research Business Fund(No.xzy012020113)the Clinical Research Fund of the First Affiliated Hospital of Xi’an Jiaotong University(No.XJTU1AF-CRF-2018-022).
文摘Background:Textbook outcome(TO)can guide decision-making among patients and clinicians during preoperative patient selection and postoperative quality improvement.We explored the factors associated with achieving a TO for gallbladder carcinoma(GBC)after curative-intent resection and analyzed the effect of adjuvant chemotherapy(ACT)on TO and non-TO patients.Methods:A total of 540 patients who underwent curative-intent resection for GBC at the Department of Hepatobiliary Surgery of the First Affiliated Hospital of Xi’an Jiaotong University from January 2011 to December 2020 were retrospectively analyzed.Multivariable logistic regression was used to investigate the factors associated with TO.Results:Among 540 patients with GBC who underwent curative-intent resection,223 patients(41.3%)achieved a TO.The incidence of TO ranged from 19.0%to 51.0%across the study period,with a slightly increasing trend over the study period.The multivariate analysis showed that non-TO was an independent risk factor for prognosis among GBC patients after resection(P=0.003).Age≤60 years(P=0.016),total bilirubin(TBIL)level≤34.1 mmol/L(P<0.001),well-differentiated tumor(P=0.008),no liver involvement(P<0.001),and T1-2 stage disease(P=0.006)were independently associated with achieving a TO for GBC after resection.Before and after propensity score matching(PSM),the overall survival outcomes of non-TO GBC patients who received ACT and those who did not were statistically significant;ACT improved the prognosis of patients in the non-TO group(P<0.05).Conclusion:Achieving a TO is associated with a better long-term prognosis among GBC patients after curative-intent resection,and ACT can improve the prognosis of those with non-TO.
基金National Key Research and Development Program of China (2022YFB3901900)National Natural Science Foundation of China (62005289)+1 种基金Youth Innovation Promotion Association (2020372)Outstanding Scientist Project of Tianfu Qingcheng Program。
文摘Flat optics has been considered promising for constructions of spaceborne imaging systems with apertures in excess of 10 m.Despite recent advances,there are long-existing challenges to perform in-phase stitching of multiple flat optical elements.Phasing the segmented planar instrument has remained at the proof of concept.Here,we achieve autonomous system-level cophasing of a 1.5-m stitching flat device,bridging the gap between the concept and engineering implementation.To do so,we propose a flat element stitching scheme,by manipulating the point spread function,which enables our demonstration of automatically bringing seven flat segments'tip/tilt and piston errors within the tolerance.With phasing done,the 1.5-m system has become the largest phased planar instrument ever built in the world,to our knowledge.The first demonstration of phasing the large practical flat imaging system marks a significant step towards fielding a 10-m class one in space,also paving the way for ultrathin flat imaging in various remote applications.
基金supported by the National Key Research&Development (R&D) Program of China (Grant No.2022YFB3205400)the National Natural Science Foundation of China (Grant Nos.51890884,51805423)the Chongqing Natural Science Basic Research Project (cstc2021jcyj-msxmX0801).
文摘Ultrasonic fluid bubble detection is important in industrial controls,aerospace systems and clinical medicine because it can prevent fatal mechanical failures and threats to life.However,current ultrasonic technologies for bubble detection are based on conventional bulk PZT-based transducers,which suffer from large size,high power consumption and poor integration with ICs and thus are unable to implement real-time and long-term monitoring in tight physical spaces,such as in extracorporeal membrane oxygenation(ECMO)systems and dialysis machines or hydraulic systems in aircraft.This work highlights the prospect of capacitive micromachined ultrasonic transducers(CMUTs)in the aforementioned application situations based on the mechanism of received voltage variation caused by bubble-induced acoustic energy attenuation.The corresponding theories are established and well validated using finite element simulations.The fluid bubbles inside a pipe with a diameter as small as 8 mm are successfully measured using our fabricated CMUT chips with a resonant frequency of 1.1 MHz.The received voltage variation increases significantly with increasing bubble radii in the range of 0.5–2.5 mm.Further studies show that other factors,such as bubble positions,flow velocities,fluid medium types,pipe thicknesses and diameters,have negligible effects on fluid bubble measurement,demonstrating the feasibility and robustness of the CMUT-based ultrasonic bubble detection technique.
基金supported in part by the National Key Research and Development Program(2022YFB3205400)the National Natural Science Foundation of China(52275570)+1 种基金the Major Science and Technology Project of Anhui Province(2022e03020002)the Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team(2022KXJ-02).
文摘Pipe contaminant detection holds considerable importance within various industries,such as the aviation,maritime,medicine,and other pertinent fields.This capability is beneficial for forecasting equipment potential failures,ascertaining operational situations,timely maintenance,and lifespan prediction.However,the majority of existing methods operate offline,and the detectable parameters online are relatively singular.This constraint hampers real-time on-site detection and comprehensive assessments of equipment status.To address these challenges,this paper proposes a sensing method that integrates an ultrasonic unit and an electromagnetic inductive unit for the real-time detection of diverse contaminants and flow rates within a pipeline.The ultrasonic unit comprises a flexible transducer patch fabricated through micromachining technology,which can not only make installation easier but also focus the sound field.Moreover,the sensing unit incorporates three symmetrical solenoid coils.Through a comprehensive analysis of ultrasonic and induction signals,the proposed method can be used to effectively discriminate magnetic metal particles(e.g.,iron),nonmagnetic metal particles(e.g.,copper),nonmetallic particles(e.g.,ceramics),and bubbles.This inclusive categorization encompasses nearly all types of contaminants that may be present in a pipeline.Furthermore,the fluid velocity can be determined through the ultrasonic Doppler frequency shift.The efficacy of the proposed detection principle has been validated by mathematical models and finite element simulations.Various contaminants with diverse velocities were systematically tested within a 14mm diameter pipe.The experimental results demonstrate that the proposed sensor can effectively detect contaminants within the 0.5−3mm range,accurately distinguish contaminant types,and measure flow velocity.
基金supported by the National Basic Research Program of China(2013CB632202)the Natural Science Foundation of China(51501015,51871195,51874062).
文摘The effects of minor Zn(0.2 at%,0.4 at%,0.6 at%) on the microstructures and mechanical properties of Mg-1.4 Gd-1.2 Y-0.15 Zr(at%) alloys were systematically explored.Results reveal that increasing Zn content leads to the increase of the intergranular phases and the change of their composition from Mg24(Gd,Y)5 phase and(Mg,Zn)3(Gd,Y) phase to 18 R-LPSO phase and(Mg,Zn)3(Gd,Y) phase.Mg24(Gd,Y)5 phase is body-centered cubic structure and shares the same lattice constant with Mg24Y5 while(Mg,Zn)3(Gd,Y)phase is face-centered cubic structure with lattice constant of 0.72 nm,slightly lower than Mg3Gd.18RLPSO structure is identified to be monoclinic with c-axis not strictly vertical to the bottom surface but93.5°.The growth patterns of intergranular phases change from the divorced growth to coupled growth as compositions change.Moreover,the mechanical performance improves with Zn rising,ascribed to the decrease of brittle phases at grain boundaries and the increase of LPSO structure phases.
基金Project supported by National Key Research and Development Program of China(2013CB632205)。
文摘In this research,the microstructure evolution,mechanical properties,and creep mechanisms of Mg-12 Gd-1 MM-0.6 Zr(wt%)alloy under different conditions were systematically studied using scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and tensile creep tests.Regarding the microstructure of the as-cast sample,the average grain size is about 42μm,and the eutectic compounds were determined to be Mg_(5)(Gd_(0.8)MM_(0.2)).During homogenization,these eutectic compounds gradually dissolve,and Mg_(12)MM particles are precipitated.During hot extrusion,complete dynamic recrystallization(DRX)occurs,resulting in equiaxial grains with an average grain size of about 12μm and the formation of streamlines consisting of Mg_(12)MM particles along the extrusion direction(ED).After T5 treatment(225℃for 7 h),a large number ofβ'(Mg_(7)Gd)phases are precipitated on the{11-20}αhabit plane and are interconnected,forming an interlaced network structure.The ultimate tensile strength(R_(m)=405 MPa)and yield strength(R_(P0.2)=288 MPa)of the T5 sample are significantly higher than those of the as-extruded sample(R_(m)=289 MPa,R_(P0.2)=185 MPa),but the elongation(A=4%)was remarkably lower than that of the as-extruded sample(A=18%).When crept at225℃under 100 MPa,the steady-state creep rates of the as-cast,as-extruded,and T5 samples are1.59×10^(-8),1.08×10^(-8),and 1.40×10^(-8)s^(-1),respectively,and their total strains within 100 h are respectively breaking,0.81%,and 0.92%,indicating that the as-extruded alloy exhibits the best creep resistance.TEM analysis reveals that,during the creep process of the T5 sample,theβ'particles coarsen and the precipitate-free zones(PFZs)widen,which increase the steady-state creep rate and the total strain within 100 h as compared with the as-extruded sample.
基金Project supported by the General Program of National Natural Science Foundation of China (51874062)。
文摘To study the hot deformation behavior of Mg-8.3 Gd-4.4 Y-1.5 Zn-0.8 Mn(wt%) alloy,hot compression tests were conducted using a Gleeble-3500 thermal simulator at temperatures ranging from 653 to773 K,true strain rates of 0.001-1 s^(-1),and a deformation degree of 60%.Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate.The true stress-true strain curves are corrected by correcting the effect of temperature rise in the deformation process.Activation energy,Q,equal to 287380 J/mol and material constant,n,equal to 4.59 were calculated by fitting the true stress-true strain curves.Then,the constitutive equation was established and verified via finite element simulation.Results of the hot processing map show that the probability of material instability increases with the degree of deformation,which indicates that the material is not suitable for large deformation in a single pass.On the whole,the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s-1,respectively.
基金The authors gratefully acknowledge the support from the Natural Science Foundation of China(grant No.51778115)the Fundamental Research Funds for the Central Universities(grant No.N182502043).
文摘A three-dimensional finite element dynamic simulation platform of the ground source heat pump system(GSHPS)is established.According to the outlet temperature of ground heat exchangers(GHEs)required by the code in summer and winter,the calculated minimum buried depth of GHEs meeting the requirements is 60 m,when the number of borehole is 9.By using the established platform,the annual operation performance and cost of the GSHPS under different buried pipe depths are studied.The results show that the deeper the buried depth of GHEs is,the better the heat exchange effect of GHEs is.Compared with the GHEs with 60 m buried depth,when the buried depth of GHEs is 65 m,70 m,75 m and 80 m,the average coefficient of performance(COP)of the unit increases by 4.1%,6.3%,7.7%and 8.2%in cooling period and 1.0%,1.6%,1.8%and 1.9%in heating period,respectively.Considering the performance and initial investment of the GHSPS comprehensively,the optimal buried depth of GHEs is 60 m.However,considering the performance the system and the total cost of the system running for 20 years comprehensively,the optimal buried depth of GHEs is 70 m.